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Linear Equations and Matrices

1.1 Systems of Linear Equations and Matrices

A general linear system of m equations in the n unknowns x|, s, , x,:

a11r1 + @129 + Q133 + -+ + AT, = b1

a91T1 + G20%2 + A3T3 + -+ + Q9T = b

2171 2202 2373 . 2anTn 2 (L.1.1)

U1 T1 + Ama%2 + Am3Ts + 0+ AmnTn = by,
A system in the Form (1.1.1) is called a homogeneous system if by = by = --- = b,, = 0.
Otherwise it is called a non-homogeneous system.
A solution, if any, of a linear system in n unknowns x, zo, - - - , T, is a sequence of n numbers
S1,82,* ,8,. That is, 1 = s1,29 = S9,-+- , 2, = S, is a solution satisfying all the above

equations.
Any system might have a unique solution, no solutions, or infinite solutions. In general, we
say that the system is consistent if it has at least one solution, and inconsistent if it has no

solutions.

Example 1.1.1

Solve the following linear system:

Solution:

Clearly adding the two (non-homogeneous) equations, we get 3x = 6. Thus, 2 = 2 and hence

y = —1. Therefore, the system has a unique soltion: x =2 and y = —1.
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Example 1.1.2

Solve the following linear system:
20 + 2y = 2

Solution:

We can eliminate x from the second equation by adding —2 times the first equation to the

second. Thus, we get
z+y=1
0=20

Thus, we simply can omit the second equation. Therefore, the solutions are of the form z = 1—y.
Setting a parameter ¢ € R for y, we get infinite solutions of the form z = 1 —+¢ and y = ¢.

Therefore, the system has infinite solutions.

Example 1.1.3

Ty + To — XT3 = 1
Solve the following linear system: Tg — 223 =0

21‘1 + QIQ - 21‘3: 5

Solution:

Adding the third equation to —2 times the first equation, we get 0 = 3 which is impossible.

Therefore, this system has no solutions.

Definition 1.1.1

An m x n matrix A is a rectangular array of m - n real numbers arranged in m horizontal rows

and n vertical columns. That is,

aj; @12 ... A ... QAip

a1 @22 ... QAg5 ... Qgp
A=

a1 Q2 ... Qi ... Qip

Am1 Am2 --. Amj ... Qmp
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In the matrix A above, we have:

e a11,@12, ..., 0y, are called elements (or entries) of the matrix.

o The entry a;; lies in the intersection of row ¢ and column j.

The size (or order) of A is m by n, written as m x n.

The matrix is called a square matrix if m = n.
o We write M,,, for the class of all real matrices of size m x n.
If a matrix A is of size 1 x n, then we say that A is a row vector. In addition, if A is of size n x 1,

say that A is a column vector . In Chapter 3, we speak of n-vectors to be elements of R".

Example 1.1.4

3 01
Matrix A = j 515 _ﬂ € Msy3 and matrix B= | 4 2 0| € Msys.
a —141

Matrix Form of Linear System of Equations:

Given a linear system of m equations on n unknowns as in (1.1.1), we transform this system

into the matrix form as in (1.1.2)

ai; a2 --c Ay by
a1 Gz -+ G2 bo (1 1 2)
Am1 Am2 **° Amn bm

We say that the form of (1.1.2) is the augmented matrix form . Note that each row in the

augmented matrix form correspond to an equation in the associated system.

Example 1.1.5

Here is an example of transforming a system of equations into its augmented matrix form:

X1 + i) — T3 = 1 1 1 -1 1
T - 2[E3 = 0 — 01 -2 0
2y + 29 — 2m3= 5 2 2 -2 5
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The basic method for solving a linear system is to perform algebraic operations on the system that

do not change the solution set so that it produces a simpler version of the same system.

In matrix form, these algebraic operations are called elementary row operations:

* Given a matrix A € M,,«,, we define the following elementary row operations:

1. interchanging a row by another row,
2. multiplying a row by a non-zero scalar,
3. adding a multiple of a row to another row. That is,

replace a;1, @iz, , Qin DY Qi1 + Cak1, Qo + Caga, -+, Qin, + Cagy, for 1 < ik < n.

Example 1.1.6

Use elementary row operations to solve the non-homogeneous system:

T + 2$2 + 3[173: 9
21‘1 - i) + T3 = 8

3I1 - T3 = 3

Solution:

We first transform the system into its augmented matrix form. Then we use the elementary row

operations to simplify the form and finally we get the solution in the simpler system.

1 2 3 9 1 2 5) 9 1, 12 3 9
A=2 -1 1 8§ 222 19 -5 —5 —10| —> |0 1 1 2| 2==2m
r3—3r1—T13 —%T3—>7’3 r3—3rz—73
3 0 -1 3 0 -6 —-10 —24 0 3 5 12
1 0 1 5|, 1 01 5 1 0 0 2
27373 T1—T3—T1
01 12— |0 1 1 2 P— 0 1 0 -1
0 0 2 6 0 0 1 3 0 0 1 3
Therefore, the solution is z1 = 2, 2o = —1, and x3 = 3. That is the system is consistent and has

a unique solution.

Definition 1.1.2

An m x n matrix A is called row equivalent to an m x n matrix B if B can be obtained by

applying a finite sequence of elementary row operation to A. In this case, we write A ~ B.
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* Properties of matrix equivalence: For any m x n matrices A, B, and C' we have

1. A= A,
2. A B= B=x A,
3. A Band B~(C = A=C.
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1.2 Gaussian Elimination

Definition 1.2.1

A matrix A € M,,«, is said to be in the reduced row echelon form (r.r.e.f. for short) if it

satisfies the following conditions:

1. the row of zeros (if any) should be at the bottom of A,
2. the leading (first) entry of a non-zero row should be 1,
3. the leading entry of row ¢ + 1 should be on the right of the leading entry of row 4,

4. the columns that contain a leading entry 1, all its other entries are zeros.

The matrix A is said to be in the row echelon form (r.e.f.) if the last condition is not satisfied.

Example 1.2.1

Here are some examples of some matrices to clarify the previous conditions:

1 0 0 3 0
0 0 0 0 _0
1 3 0 4
(2) B=1|0 0 0 0| isnotrr.e.f. since it has a row of zeros in the second row.
0 0 1 -2
1 0 4 5
(3) C =10 @ —2 3| is not r.r.e.f. since the leading entry in the second row is not 1.
0 0 1 2
1 0 0 2
4)D=10 o0 @ 3| is not r.r.e.f. since the leading entry of the third row is on the left of
o (M o o0
the leading entry of the second row. Switch 2°¢ and 3' rows to get the r.r.e.f. form.

Theorem 1.2.1

Every non-zero m x n matrix is row equivalent to a unique matrix in the r.r.e.f.
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1.2.1 Solving System of Linear Equations

We write O to denote the zero matrix whose entries are all 0. We write I,, (or simply) to denote the

identity matrix with 1’s on the main diagonal and zero elsewhere.

In the augmented matrix form, we add a vertical bar | to recognize the scalars in the last column
of the matrix. That is a system of linear equations might be transformed into augmented matrix form
[A | B] Moreover, the system itself is recognized as AX = B, where A is the coefficients, X is the

vector (one column) of unknowns, and B are the scalars.

Solving AX = B

{ \
AX = B where B # O (non-homogenous) AX = O (homogenous)

| |
[ I I [ I

unique sol no sol infinite sol trivial sol non-trivial sol

| Remark 1.2.1

>

* Guass-Jordan method for solving AX = B:

1. Find the r.r.e.f. of augmented matrix [A | B},

2. Solve the reduced system.

Note that, the solution of the reduced system is the solution of the original one.

Theorem 1.2.2

Let AX = B and CX = D be two linear systems of equations. If [A|B| ~ [C'| D], then the

two system have the same solutions.
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i. Solving Non-Homogenous System AX = B with B # O

Example 1.2.2 |
Solve the following system using the Guass-Jordan method.
r + 2y + 3z =9
2r — y + =z = 8
3z -z = 3
Solution:
1 2 319 1 2 3 9 | 1 2 3] 9
ro—2r1—79 —5Tr2—T2 r1—2ro—r1
2 -1 1|8 —/——|0 =5 =5 |-10|———|0 1 1| 2| —/——
r3—3r1—rs3 —2r3—ms r3—3ro—rs3
3 0 —-113 0 —6 —-10|—24 0 3 5112
1 0 1]5], 1 0 1|5 1 0 0 2
37373 r1—r3—ri
0112—>0112m010—1
0 0 2|6 0 0 1|3 0 0 1 3
2
Therefore, the reduced system is: ©* = 2, y = —1, and z = 3. Thus, X = |—1]| is a unique
3
solution to the system.
[ Remark 1.2.2
The system AX = B has a unique solution if and only if A =~ I.
Example 1.2.3
Solve the following system using the Guass-Jordan method.
1 + X2 — T3 + 4xy, = 1
+ X9 — 33 + 4z4 = O
2007 4+ 219 — 23 + 8xy = 2
Solution:
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1 1 -1 41 1 1 —1 41 10 2 01
0 1 —3 40| 22028 1 1 —3 4|0 2229 g 1 —3 4]0
9 2 -9 82 00 0 00 00 000

Therefor, the reduced system is:

T+ 2ZL'3 = 1 — ry = 1-— 2I3
Ty — 3.T3 + 41}4 = 0 Ty = 3%3 — 4%4

We now fix x3 = r and x4 =t for r,;t € R to get the following infinite many solutions:

1—2r
xy, = 1-—2r -~ X = 3r— 4t for all r,t € R.

(7

| Remark 1.2.3

>

The system AX = B has infinity many solutions if the number of unknowns (columns of matrix

A) is more than the number of equations (rows of matrix A).

Example 1.2.4

Solve the following system using the Guass-Jordan method.

Ty + ) — T3 + 41’4 1
+ x93 — 3x3 + 4ry = 0
2%‘1 + 2332 — 2.’13'3 + 81’4 = 3
Solution:
1 1 -1 411 1 1 -1 411
0 1 -3 40| 2222 00 1 -3 4]0
2 2 -2 8|2 0 0 0 0|1

At this point, it can be seen that the third row suggests that 0 = 1 which is not possible.

Therefore, this system has no solution.
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| Remark 1.2.4

The system AX = B has no solution whenever A ~ a matrix with a row of zeros while [A | B] ~

a matrix with no rows of zeros.

7. Solving Homogenous System AX = O

Example 1.2.5
Solve the following system using the Guass-Jordan method.
r + 2y + 3z = 0
r + 3y + 2z = 0
2r + y — 2z = 0
Solution:
1 2 3]0 1 2 310 1 0 510 o
T2—T1—T2 r1—2ro—7r1 T3 7373
L By e b [ O
2 —-210 -3 =810 0 0 —-111]0
1 0 510 1 0 00
01 —1]0X==%100 1 00
ro+r3—79
0 0 110 0 0 1]0
0
Therefore, the reduced system is: x =0, y = 0, and z = 0. Thus, X = || is a trivial solution.
0

[ Remark 1.2.5

The system AX = O has a trivial solution whenever A ~ I.
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Example 1.2.6

Solve the following system using the Guass-Jordan method.

T + i) — T3 + 41‘4 = 0
+ i) - 3.173 + 41‘4 = 0
21‘1 —+ 2%2 — 2![’3 + 8(134 = 0

Solution:

1 1 -1 4]0 1 1 =1 4]0 1 0 2 010
01 -3 4|0/ 2210 1 -3 4]0/ 200 1 -3 4]0
2 2 =2 810 0 0 0 00 0 0 0 0]0
Therefor, the reduced system is:
r1+2x3 = 0 N Ty = —2x3
o —3x3+4ry = 0 To = 3x3— 4y

We now fix x3 = r and x4 =t for r,t € R to get the following non-trivial solution:

—2r
o= T o PP rallrte R
Tro = 3r—4t r

t

[ Remark 1.2.6 ]

The system AX = O has a non-trivial solution if the number of unknowns (columns of matrix

A) is greater than the number of equations (rows of matrix A) in the reduced system.
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Exercise 1.2.1

1. Find the reduced row echelon form (r.r.e.f.) of the following matrix:
2 46 0
1 2 40
1 3 3 1
xr + y + =z = 0
r + 2y + 3z = 0
2. Solve the systems:
r + 3y + 4z = 0
x + 4y + 52z = 0
x|, -+ 2.%'2 — 33?3 = 6
3. Solve the systems 2z, — 2y + 4dz3 = 1
I — To + r3 = 3.
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1.3 Matrix Operations

Let A be a given m X n matrix

113 Aaiz - Aip

a21 Qg2+ Q2p
A=

Am1  Am2 - Gmn

Then we might write A = [a;;] where a;; correspond to the entry at row ¢ and column j. We also might

write (A);; to denote the same entry a;;.

We also use the terms: row vector, row;(A), and column vector, col;, to denote the it" row and

4" column of the matrix A. That is

(Ilj
A) = d L(A) = | %
row;(A) = ay a0 an an col;(4) = |
1xn :
a .
m mx1
An n x n matrix is called a square matrix. Moreover, the entries a;, ass, - , a,, are said to

be on the main diagonal of A.
The trace of A, denoted by tr(A), is the sum of the entries on the main diagonal. If A is not a

square matrix, then the trace of A is undefined.

\. /

| Remark 1.3.1

r a

Two m x n matrices A and B are said to be equal if (A);; = (B);; for all 1 < i < m and

1<j<n.

Example 1.3.1

Find the values of a,b, ¢, and d if

a+b c+d
c—d a—2»b

:[_12 j].

Solution:
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Since the two matrices are equal. Then

a—b=1
c—d=—

e Matrix transpose

Definition 1.3.1

If A= [a;]is an m X n matrix, then the n x m matrix AT = [a;;], where 1 < j < n and
1 < i < m, is called the transpose of A. Observe that A7 is resulted by interchanging rows

and columns of A.

Example 1.3.2

Here are some examples of matrices and their transpose:

@ b 1 40
A=1d e f : B:[ ] , and 02[257}
) -1 2 3 1x3
goh “Jaxs 28
a d g 1 -1
A"=1p e n| , B'=|4 2 ,and  CT = |5
c f i 0 3

3x3 3Ix2 3Ix1
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e Matrix addition and substraction

To add two m x n matrices A = [a;;] and B = [b;;], we must have the size(A) = size(B). Then,

A+ B =C, where C = [¢;;] with ¢;; = a;; £ b;j, forall 1 <i <m and 1 < j <n. That is,

(A+ B)yj = (A)ij = (B)ij = ay; £ byy.

Example 1.3.3

If possible, find A + B and AT — B, where

Solution:

Clearly, A+ B is not possible as they have different sizes. On the other hand, size(AT) = size(B),

2 3 -1 2 4 11 =5
1 0 1 5 1 1 -4 -1 0 ‘
2%x3 2%3 2%3

and

AT —-B=

e Matrix multiplication

If A= [a;;]is any m x n matrix and c is any scalar, then c A = [ca;;] forall 1 <i<mand 1 <j <n.

That is, (cA);; = ¢(A);; = ca;j. The matrix ¢ A is called a scalar multiple of A.

Definition 1.3.2

An n-vector X = (x; zy --- x,) can be written as X = (21,22, ,z,). The dot (inner)

product of the n-vectors X = (z1, 22, - ,2,) and Y = (y1,¥y2, - , yn) is defined by

X Y =2y +3ayo + -+ Tl = D Tils. (1.3.1)
=1




16 Chapter 1. Linear Equations and Matrices

Example 1.3.4

If X =(1,0,2,—1) and Y = (3,5,—1,4), then X - Y =3 + 0+ (=2) + (—4) = —3.

Definition 1.3.3

Let A = [a;j] be an m X p matrix and B = [b;j| be a p x n matrix. Then, the product of A and
B is the m x n matrix AB = [(AB);;], where (AB);; = row;(A) - col;(B). That is,

p
(AB)U = ailblj -+ aigbgj + -4+ a/ipbpj = Z aikbkj, for 1 S 1 S m and 1 S] S n.
k=1

The product is undefined if the number of columns of A not equals the number of rows of B.

Example 1.3.5

2 1
ra— b3 1 ,and B=|0 2| ,then AB= ZSplUE SIS B S S
2 0 1 44+0—-1 240+2 3 4
2x3 -1 2 2x2
3Ix2

Example 1.3.6

Find AB and A’ B if possible, where

A= L 2,andB:
1 =2 0

4 1 -1
2 5 1|

Solution:

e AB is not defined # columns in A is not the same as # rows of B.

1 1 442 145 —1+1 6 6 0
- 41 -1

- ATB=10 2/ o =] -4 -0 -2 |=|-4 -10 -2

2 0 8 2 —2 8 2 -2
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| Remark 1.3.2

1 0 0 0
In general, AB # BA. For instance, consider A = and B = . Check it yourself!!
1 0 1
It is always true that AB = BAif A= 1, or that A = B.
Example 1.3.7
Let A = [1 ) 0} Find all values of ¢ so that ¢ A - AT = 15.
Solution:
1
Note that cA - AT = ¢ {1 -9 0] - | =2| = 5¢. Therefore, 5¢ = 15 and hence ¢ = 3.
0
Example 1.3.8
1 -2 3 1 4
Let A=1|4 2 1|,and B= |3 —1|. Compute the (3,2)-entry, (AB)s2, of AB.
0 —2 -2 2
Solution:
(AB>32 = I'OW3(A) . CO].Q(B) = [O 1 - 2] . [4 -1 2]T =—-1—-4=-5.

Theorem 1.3.1

If Ais an m x p matrix and B is a p X n matrix, then

(a) for each 1 < j <mn, col;(AB) = A col;(B).
(b) for each 1 <i < m, row;(AB) = (rowi(A)> B.

TRUE or FALSE:

* If a matrix B has a column of zeros, then the product AB has a column of zeros as well. (TRUE).

reason: Assume that column j of B is a column of zero. Then, col;(AB) = Acol;(B) = 0.
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Example 1.3.9

3x2

1. Find the first column of AB.
2. Find the second row of AB.

Solution:

We simply use Theorem 1.3.1 as follows:
2

-2
4

[ 3

2. rowy(AB) = rowy(A) B = [3 4

1. coly(AB) = Acoly(B) = | 3
-1

ot

1 2
Let A=1|3 4 and B = & 4] )
3 21
-1 5 2x3

4
6
17

R

Definition 1.3.4

Let A be an m x n matrix and X € R” (be an n-vector), then
ai; a2 o Qip | | T1 1171 + Q12%2 + *++ + A1p Ty
AX = 922 OG22 - G| (Z2f _ | Gn1 + a2T2 + -+ + A2 Ty
Qm1 Am2 Amn T, Am1T1 + Am2T2 S oooqF AynTn
a1 a2 Q1n
21 22 a2
=1 +axo | |+, | | =xic0l1(A) + zac0la(A) + - - - + 2,001, (A).
Am1 Am2 Amn
That is, AX is a linear combination of columns of A and the entries of X are the coefficients.
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Example 1.3.10

Write the following product as a linear combination of the columns of the first matrix.

L3, 1 3
21[ ]=32+(—2)1.
4 2 4 2

Example 1.3.11

1 2
Let A=1|3 4| and B = _32 . 4] . Find the second column of AB as a linear combination
-1 5

of columns of A.

Solution:

1 2 5 1 2
coly(AB) = Acoly(B)=| 3 4 {}:3 3(+2|4

Example 1.3.12

If A and B are n X n matrices, then

1. tr(cA) = ctr(A), where ¢ is any real number.

2. tr(AB) = tr(BA).

Solution:

L tr(cA) =c(A)n+c(A)pn+ - +c(A)pn =c[(A)11 + (A)aa+ -+ (A)nn] = ctr(A).
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Exercise 1.3.1

1. Let A= (1) f . Compute A% + I,.
L2 0 1 3
2. Let A= |4 5| and B = . _4 . Find the third row of AB.
36 a
Ll 4 1 1
3. Let A= |0 2| and B = - _1] . Find AB and express the second column of AB
2 0
as a linear combination of the columns of A.
1 2 7
4. Let A= 1|1 -5 7|. Find tr(A).
0 -1 10
5. Let A= (1) 1] . Find A" and find all matrices B such that AB = BA.
:l 1
6. Let A= |2 2|. Find A0,
2 2
7. Find a 2 x 2 matrix B # O and B # I; so that AB = BAif A= L2
8. Show that if A and B are n X n matrices, then tr(A + B) = tr(A) + tr(B).
9. Show that there are no 2 x 2 matrices A and B so that AB — BA = I,.
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1.4 Inverses; Algebraic Properties of Matrices

Theorem 1.4.1: Properties of Matrix Arithmetic

Let A, B, and C' be matrices of appropriate sizes, and let r, s € R. Then:

A+B=B+A (Commutative law for matrix addition)
A+(B+C)=(A+B)+C (Associative law for matrix addition)
A(BC) = (AB)C (Associative law for matrix multiplication)
A(B+C)=AB+ AC (Left distributive law)
(A+ B)C = AC + BC (right distributive law)
A(B-C)=AB- AC

(A-B)C =AC - BC

r(A+ B)=rA+rB

r(A—B)=rA—rB

(r+s)A=rA+sA

(r—=s)A=rA—sA

. r(sA) = (rs)A

13. r(AB) = (rA)B = A(rB)

We only proof (1) and (10). Let A = [a;;] and B = [b;;] for 1 <7 <m and 1 < j <n. Then

2 L N &8 & = 9 B =

— =
N~ O

10. (r+ s)A = (r+ 9)[ai;] = [(r + s) ayj] = [r asj + s ai;] = [rai;] + [sai;] =rA+ sA.

Theorem 1.4.2: Properties of Zero Matrices

Let ¢ be a scalar, and let A be a matrix of an appropriate size. Then:

1. A+O=0+A=A
2. A—O=A
3. A—A=A+(-A)=0
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4. OA=0
5. If cA= 0O, thenc=0o0or A= 0.

We only proof (5). Let A = [a;;] for 1 <i<mand 1< j<n.If cA= 0O, then for each i and

J, we have (cA);; = ¢(A);; = ca;; = 0. Therefore, either ¢ = 0 or we have a;; = 0 for all ¢ and j.

Therefore, either ¢ =0 or A = O.
0 1

B=|' 3 o= |? % aap=|' 2
2 1 2 1 2 0 0

B # C. That is, the cancellation law does not hold here.

Let A = . Then, AB = AC =

1 2,but
2 4

For any a,b € R, we have ab = 0 implies that a = 0 or b = 0. However, in matrices we have
AD = 0O but A# O and D # O.
Moreover, the n x n identity matrix I commutes with any other matrix. That is, Al = [A= A

for any n X n matrix A.

Definition 1.4.1

A matrix A € M, , is called nonsingular or invertable if there exists a matrix B € M,,«,

such that
AB=BA=1,.

In particular, B is called the inverse of A and is denoted by A~!. If there is no such B, we

say that A is singular which means that A has no inverse.

Example 1.4.1

Here is an example of a 2 x 2 matrix along with its inverse.

| i S S R O
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Theorem 1.4.3

If a matrix has an inverse, then its inverse is unique.

Assume that A € M,,,, is a matrix with two inverses B and C, then
B=BIl,=B(AC)=(BA)C=1,C=C.

Therefore, A has a unique inverse.

Theorem 1.4.4

b] is nonsingular iff ad — be # 0, in which case the inverse of A is

The matrix A =
c

We simply show that AA~! = A='A = I. Here, we only do the following:

et | b]_ 1 [d —b]: 1 [ad—bc —ab + ab

c d| ad—bc ad —bc |ed — cd —bc+ ad

—C a

_ 1 ad — be 0
ad — be 0 —bc + ad

We note that the quantity ad — bc above is called the determinant of the 2 x 2 matrix A and is

denoted by det (A) = ad — bc. The determinant will be discussed in general sizes in Chapter 2.

1 2

As an example, if A = , then det (A) = 3 — 2 = 1 and hence the inverse of A is

g1 1|3 =2 _ |3 -2
-1 1|

3-2 -1 1
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Theorem 1.4.5

If A and B are nonsingular n x n matrices, then A B is nonsingular and (A B)~! = B~1 AL,

Since both A and B are nonsingular, then both A=! and B! exist. Thus
ABB'AY)Y=ABB YA '=ATA ' =AA =1

AB(B'AT)=ABB YA =ATAT =AA =1

Thus, A B is nonsingular and (AB)™! = B~ A~1.

[ Remark 1.4.1

Let m and n be nonnegative integers and let A and B be two matrices of appropriate sizes, then

1. A=Tand A" =AA--- A (n-times),

2. AmAn — Amn,

3. (A = Amn

4. (AB)" = (AB)(AB)---(AB), (n-times), and in general (AB)" # A"B".

5. In general, (A+ B)? = (A+ B)(A+ B) = A>+ AB+ BA+ B*> # A* + 2AB + B2

Theorem 1.4.6

If A is a nonsingular matrix and n is a nonnegative integer, then:

1. A! is nonsingular and (A~1)"" = A.
2. A" is nonsingular and (A")"' = A™" = (A~1)".

3. k A is nonsingular for any nonzero scalar k, and (kA)™" = k1AL

We use the idea of the definition. A matrix B is the inverse of matrix C' if BC = CB = 1.
1. Clearly, A= A = AA~! = I and hence A is the inverse of A~
2. A" A = A" " = A% = J. That is A~"™ is the inverse of A".
3. (KA)(KTA™Y = (kk~1)(AA™Y) = 1. Also, (k~'A71)(kA) = I. Thus, (kA)_1 =k 1AL,
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Theorem 1.4.7

Let A and B be two matrices of appropriate size and let ¢ be a scalar. Then:
1. (AT = A,
2. (A£B)T = AT + BT,
3. (cA)T =c AT and

4. (AB)T = BT AT, This result can be extended to three or more factors.

Exercise 1.4.1

If A is a square matrix and n is a positive integer, is it true that (A™)T = (AT)"? Justify your

answer.

Theorem 1.4.8

If A is nonsingular matrix, then A7 is also nonsingular and (A7)~ = (A™1)T.

We simply show that the product AT (A™)T = (AT AT = I. Clearly, AT(A™H)T = (A1 A)T =
IT = I. Similarly, (A~)TAT = T.

Example 1.4.2

Let A = (f 01) and B = (Zl)) ;l) Find AB, and BTAT.

Solution:

Clearly, AB = 2+0 38+0 = 2 8 . Moreover, BTAT = (AB)T = 2
1-3 4-5 2 1 8 —1
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Definition 1.4.2

Let A be an n x n (square) matrix and p(z) = ag + a1z + - - - + a,»z™ be any polynomial. Then

we define the matrix polynomial in A as the n x n matrix p(A) where

p(A) = aolp, + a1 A+ -+ a, A™.

Example 1.4.3

Compute p(A) where p(z) = 22 — 2r — 3 and A =

~1 2
0 3|

Solution:

Example 1.4.4

Show that if A4+ 5A — 21 = O, then A™' = (A +51).

Solution:

A2+ 5A — 2I = O implies that 2] = A4+ 54 = A(A +5I). Then I = $A(A + 5I). Therefore,
I=A (%(A + 5])), which shows that A~ = (A +51).

Example 1.4.5

Show that if A is a square matrix such that A* = O for some positive integer k, then the matrix

A is nonsingular and (I — A)™" =T+ A4 A%+ ... + AL,

Solution:
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T— A+ A+ + A7) = [THU+ R+ 4 A - R A AL 4 4]
=] A"=T-0=1

27
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Exercise 1.4.2

1
1. Let A= ? . Find all constants ¢ € R such that (cA)? - (cA) = 5.

3
2. Let A be an n x n matrix such that A3 = 0. With justification, prove or disprove that

(I,—A) ™ =A+ A+ 1,

3. A square matrix A is said to be idempotent if A2 = A.

(a) Show that if A is idempotent, then so is I — A.
(b) Show that if A is idempotent, then 24 — [ is nonsingular and is its own inverse.
4. Let p1(z) = 2% — 9, po(x) =  + 3, and p3(x) = z — 3. Show that p;(A) = pa(A)ps(A) for
any square matrix A.
5. Let A be a square matrix. Then
(a) Show that (I —A)™" =T+ A+ A2+ A% if A*=O.
(b) Show that (I — A) ' =T+ A+ A2+ ... + A" if A"+ = Q.
6. Let J, be the n x n matrix each of whose entries is 1. Show that if n > 1, then

1
[—J) =T ——J,.

7. Let A, B, and C' be n x n matrices such that D = AB + AC' is non-singular.

(a) Find A~! if possible.
(b) Find (B + C)~! if possible.

8 Tet A= |7 2| andB=|' 71 2| Find Cif (BT +C)A~! = BT.
3 3 2 0
1 2 0 1 1 0

9. Let A~'=10 1 —1land B=1|1 0 o0|. Find Cif AC = BT,
2 0 1 0 1 1

Hint: Consider multiplying both sides from the left with A7
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1.5 A Method for Finding A~!

Unless otherwise specified, all matrices in this section are considered to be square matrices.

Theorem 1.5.1

If A is an n x n matrix, then the following statements are equivalent:

1. A is nonsingular.
2. AX = O has only the trivial solution.

3. A is row equivalent to I,,.

[ Remark 1.5.1

* How to find A~! for a given A € M,,,,:

1. form the augmented matrix [ A |1, ],
2. find the rr.ef. of [A|1,], say [C|B]:

(a) if C' = I, then A is non-singular and A~! = B,
(b) if C' # I, then C' has a row of zeros and A is singular matrix with no inverse.

Example 1.5.1

Find, if possible, A~! for A =

é]

1 0 To—21r1—T2 1 1 1 0 r1—T2—T1 1 0
—_— —_—
0 1 0 1]-2 1 0 1

Solution:

1 1
2 3

3 —1
-2 1|

Therefore, A is non-singular and A=! = [ 2 _1] .
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Example 1.5.2

1 0 1
Find, if possible, A= for A= [1 1 2
2 01
Solution:
1 0 171 0 O 1 0 1 1 0 0 1 0 1 1 0 0
11 2/01 0 —-——==1]01 1/-1 10 =>[011|-11 0
r3—4r1—r3
2 0 1,0 0 1 0O 0 -1]-2 0 1 0 0 1 2 0 -1
1 0 0|—-1 0O 1 -1 0 1
QL?’:E% 0 1 0| -3 1 1| . Therefore, A is non-singular and A=t = [ -3 1 1.
r2—r3—r2
0 0 1 2 0 -1 2 0 -1
Example 1.5.3
1 2 -3
Find, if possible, A=! for A= |1 -2 1
5 —2 =3
Solution:
1 2 =31 0 0 1 2 1 0 0
1 -2 1|0 1 0| =% 00 4 4| -1 1 of 2
r3—5r1—7r3
5 =2 =30 0 1 0 —-12 12| -5 0 1

1 2 =3 1 0
1

© © ©f-2 -3

At this point, we can conclude that this matrix is singular with no inverse because of the fact

0
0l.
1

that the third row in the first part is a zero row. In particular, A~ does not exist.

| Remark 1.5.2

Let A be an n X n matrix:

1. if A is row equivalent to I, then it is non-singular,
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Example 1.5.4

A= [_03 (5)] is row equivalent to I5.

2. if A is row equivalent to a matrix with a row of zeros, then it is singular.

Example 1.5.5

A= [_1 1] is row equivalent to a matrix with a row of zeros.

TRUE or FALSE:

= If A and B are singular matrices, then so is A+ B. (FALSE).
reason: A = (1) 8] and B = 0 0] are two singular matrices, while A + B = 1 (1)] is a non-
singular.

= If A and B are non-singular matrices, then so is A + B. (FALSE).
reason: A = (1) (1)] and B = [_01 _01] are two non-singular matrices, while A + B = 8 8] is a

singular.
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Exercise 1.5.1

1
1. Let AT = |1
2

1
2. Let A1 = |0
0

0
3. Let A= |1

0

1
1
1

(a) Find B~

S = O

2 3
1
0
—1

0| and B =
2

(b) Find C it A= BC.

1
0|. Find (24)71.
1

1 2
1 3
1 1

{Hint: If ¢ is a nonzero constant, then what is (cA)~!?]

2|. Find all x,y, z € R such that
1

—1

0]-

—1

Ty z}A—[l 2 3}
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1.6 More on Linear Systems and Invertible Matrices

Theorem 1.6.1

A (nonhomogeneous) system of linear equations has zero, one, or infinitely many solutions.

If AX = B, B # O has no solutions or one solution, then we are done. So, we only need to show
that if the system has more than one solution, then it has infinitely many solutions. Assume
that Y and Z are two solutions for the system AX = B. Then, forr,s € R, defineU =rY +s 2

to get:
AU =A(rY +sZ)=ArY)+ A(sZ)=r(AY)+s(AZ)=rB+sB = (r +s)B.

If r+s =1, then U is a solution to the system. Since there are infinitely many choices for r and

s in R, the system has infinitely many solutions.

TRUE or FALSE:

* If X; and X, are two solutions for AX = B, then %Xl — 2X, is also a solution. (FALSE).

. Gj 3 _o9_ =1
reason: Since 5 —2 = 5 # 1.

Theorem 1.6.2

If A is a nonsingular n x n matrix, then for each n x 1 matrix B, the system of equations AX = B

has a unique solution, namely X = A™!B.

Given AX = B, we multiply both sides (from left) by A~! to get X = A~'B. That is A™'B is
a solution to the system.

To show that it is unique, assume that Y is any solution for AX = B. Hence AY = B and again
Y = A"1B.
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Example 1.6.1

Solve the following system "A X = B” (given in its matrix form)

1
2
1

S = O
[T S
|
—_

1
1
2

Solution:

We solve the system by using A~!, we can find the inverse of A as in Example 1.5.2, to get

-1 0 1
Alt=1-3 1 1
2 0 -1

Then, using Theorem 1.6.2, we get the following unique solution:

-1 0 1 0 -1
X=|y|=A"B=|-3 1 1||1|=]0
z 2 0 -1 |-1 1
Example 1.6.2
Solve the following system "A X = O”
1 0 1] |z 0
11 2|yl =10
2 0 1 |z 0
Solution:
We can find the inverse of A as in Example 1.5.2, to get
-1 0 1
At=1-3 1 1
2 0 -1
Then, using Remark 1.6.2, we get the trivial solution:
x -1 0 1110 0
X=|y|=470=|-3 1 1]|0]=]0
z 2 0 —1(10 0
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e Solving a sequence of systems with a common coefficient matrix

Given the systems AX = Bj; AX = By;--- ; AX = By, an efficient way to solve these systems

at once is to form the augmented matrix
[A[Bi| By | -+ | B ],

and use the Guass-Jordan elimination to solve all of the system at the same time.

Example 1.6.3

Solve the following linear systems:

x + 2z =0b f i. by =0,by=1,and by = 1;

T +y + 2z = by or ~

9 4+ 3y = b3 11. bl—l, b2—2, and b3—3
Solution:
1 0 17011 1 0 17071 1 0 0]—-1,0
11 2|12 =100 1 1]1|1|=—3%01 0|0 |0

r3—2r1—7r3 ro—T3—T2

2 0 3113 0 0 1(1|1 0O 0 11 |1
Therefore, the solution of the system (i) is z = —1,y = 0,z = 1 and the solution of system (ii)

isz=0,y=0,z=1.

Theorem 1.6.3

Let A be a square matrix. Then

1. If B is a square matrix satisfying BA = I, then B = A%
2. If B is a square matrix satisfying AB = I, then B = A~1.

1. Assuming BA = I, we show that A is nonsingular by showing that the system AX = O
has only the trivial solution. Multiplying both sides (from left) by B, we get B (AX) =
B O which implies (BA)X = IX = X = O. Thus, the system AX = O has only the
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trivial solution. Theorem 1.5.1 implies that A is nonsingular. Therefore BA = I implies
(BA)A™' = TA™!. Hence B= A~1.

2. Using part (a), AB = I implies that A = B~!. Taking the inverse for both sides, we get
A~! = B as desired.

Theorem 1.6.4: Extended Version of Theorem 1.5.1

If A is an n x n matrix, then the following statements are equivalent:

A is nonsingular.
AX = O has only the trivial solution.
A is row equivalent to I,,.

AX = B is consistent for every n x 1 matrix B.

N A

AX = B has exactly one solution for every n x 1 matrix B.

We only show that 5 implies 1: Assume that the system AX = B has one solution for every
n x 1 matrix B. Let X7, Xs, -, X,, be the solutions (respectively) to the following systems:

1] 0] 0]
0 1 0
AX = o, AX=|o|, ---, AX=|0]|.
0] 0] 1
If C' is the n X n matrix formed by the column vectors X, X, -+, X,,, we get
AC=A[X, | Xo| -+ | Xp]| =[AX 1 | AXy | -+ | AX,] =1,

By Theorem 1.6.3, we get C'= A~!. Thus A is nonsingular.

Theorem 1.6.5

Let A and B be two square matrices of the same size. If AB is nonsingular, then A and B must

be also nonsingular.
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In what follows, we discuss when a given system is consistent based on the remarks in Section

1.2

Example 1.6.4

Consider the system:

T + y + z = 2
Tz + 2y — z = 2
T + 2y + (a*=5)z = a

Find all values of a so that the system has:

(a) a unique solution (consistent).
(b) infinite many solutions (consistent).
(¢) no solution (inconsistent).

Solution:

In this kind of questions, it is not necessary to get the r.r.e.f. So, we will try to focus on the last

row which contains the term ”a” as follows:

11 1|2 11 1| 2 11 1| 2
M2 -—1f2 222200 1 2| o201 -2| 0
1) 2 a*-5]a 0 a®—6|a—2 00 a®—4|a-2

At this point, we have:

(a) a unique solution if a? — 4 # 0 <= a # £2 <= a € R\{-2,+2}.
(b) infinite solutions if {a2 —4=0anda—2= 0} = {a =42 and a = —i—2} > a=+2.
(c) no solutionif{a2—4:0anda—27é0}<:> {a:ﬂ:Q anda;«é+2} = a=-2.

Example 1.6.5

Discuss the consistency of the following non-homogenous system:

x + 3y + kz = 4
2 + ky + 122z = 6

Solution:
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6 0 k-6 12 -2k

4] ro—21r1—T2 [1 3 k
SR

4

(a) can not have a unique solution (not equivalent to I because it is not square matrix!!),

1 3 k
2 k 12

The system is consistent only if k& # 6:

(b) has infinite solutions when k # 6,

(¢) has no solutions when k = 6.
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Exercise 1.6.1

1 0 3 3 1
0o 1 1 -1 0 .

1. Let A= L 93 and B = 0 | Find all value(s) of a such that the system
0 2 0 a®+1 a+ 2

AX = B is consistent.

2. Find all value(s) of a for which the system

r - y + (a+3)z = a>—a-7
—r + ay — az = a
2a—1)y + (a®>+2)z = 8a—14.

has (a) no solution (inconsistent), (b) unique solution (consistent), and (c) infinite many
solutions (consistent).
3. Discuss the consistency of the following homogenous system:
T 4+ Yy — z =0

r — y + 3z 0
4+ y + (a®>=5)z =0

4. Show that if C; and Cy are solutions of the system AX = B, then 4C; — 3C5 is also a
solution of this system.

5. Let U and V be two solutions of the homogenous system AX = 0. Show that rU + sV
(for 7, s € R) is a solution to the same system.

6. Let U and V' be two solutions of the non-homogenous system AX = B. Show that U — V'
is a solution to the homogenous system AX = O.

7. If A is nonsingular matrix, then AA” and AT A are both nonsingular matrices.

8. Show that if A, B, and A + B are invertible matrices with the same size, then
AA'+BYB(A+B) '=1I

9. Let A be an m x n matrix, and B be an m x 1 column vector. Show that the system
AX = B has a solution if and only if B is a linear combination of columns of A.

[Hint: Recall Definition 1.3.4].
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1.7 Diagonal, Triangular, and Symmetric Matrices

The "diagonal matrix”, D = [d;;], is an n X n matrix so that d;; = 0 for all ¢ # j.

_dn 0O --- 0 P
D = 0 d:22 . O it is also can be written as D = O d? . 0
| 0 0 -+ du 0 0 - dy
Moreover, we sometime write D = diag(dy,ds, - -- ,d,). If all scalars in the diagonal matrix are

equal, say equal ¢, then D is said to be a scalar matrix. In particular, the identity matrix 7,, is

a scalar matrix with ¢ = 1. That is [, = diag(1,1,--- , 1).

1. D is nonsingular if and only if all of its diagonal entries are nonzero; in this case we have

1/d, 0
b | 0 Yoo 0
0 0 - 1/d,

2. If k is a positive integer, then D* is computed as

d’f 0O --- 0
P 0 d& - 0
o 0o -.. dﬁ

3. If Ais an n x m matrix and B is an m X n matrix, then

dy rowy(A)

dy rows(A)

DA= and  BD = |d;coli(B) dycoly(B) --- d,col,(B)

d,, row,(A)
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Example 1.7.1

1 0 -1
1 0 O 1 1 0 1 1 -1 0
Let D= 10 3 0|, A= . , and B= 12 3 1 2| . Compute D3, AD,
2 4 2
U 5 1 -1 3
and DB.
Solution:

Note that D = diag(1,3,2). Hence D™ = diag(l, %, %) and thus D=3 = (Dil)3 = diag(l, 2%, %)

1 0 -1 1 0 -2
1 0 O
1 1 0 1 3 0
AD = . 1 3 0| = 3 e = [COZI(A> 300[2(/1) 260[3(%1)},
2
5 1 -1 00 5 3 =2
and
1 0 offt 1 -1 O 1 1 -1 0 row; (B)
0 0 24 2 3 8 4 2 6 2 rows(B)

Example 1.7.2

Find all 2 x 2 diagonal matrices A that satisfy the equation A% —3A + 21 = O.

Solution:

Assume that A =

g 2] be a 2 x 2 diagonal matrix. Then,

3a. 0| |2 0f _{0 0
0 3b 0 2 0 0|

Hence, a* —3a+2=0and b* —3b+2=0. Thatis (a —1)(a—2) =0and (b—1)(b—2) =0

2
A _3a42r=|¢ 9f_
0 1

which implies that a = 1 or 2 and b = 1 or 2. Therefore,

S o
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The "lower triangular matrix”, L = [/;;], is an n X n matrix so that [;; = 0 for all ¢ < j. The
"upper triangular matrix”, U = [u;;], is an n X n matrix so that u;; = 0 for all i > j.

l11'”~._ O :__U11 U2 -+ Uip :

o Dy u22 Tt Ugp

L= - , and U=

Theorem 1.7.1

e The transpose of a lower triangular matrix is upper triangular ma-
trix, and the transpose of an upper triangular matrix is lower trian-
gular matrix.

e The product of lower triangular matrices is lower triangular, and

the product of upper triangular matrices is upper triangular.

e A triangular matrix is nonsingular if and only if its diagonal entries
are all nonzero.

e The inverse of a nonsingular lower triangular matrix is lower triangular, and the inverse of a

nonsingular upper triangular matrix is upper triangular.

Example 1.7.3

Find a lower triangular matrix that satisfies A% =

8 0
9 —1|

] be a 2 x 2 lower triangular matrix. Then,

Solution:

a 0
c

Assume that A =

3:

a? 0] _ |8 0
a’b+clab+bc) 9 —1|
Hence, a = 2 and ¢ = —1 and thus 4b — (2b — b) = 9 implies that b = 3.
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Definition 1.7.1

A square matrix is called symmetric if A7 = A. It is called skew-symmetric if AT = —A.
A square matrix A = [a;;] is symmetric if a;; = aj; and it is skew-symmetric if a;; = —aj;.

1 2 3 0 2 -3
A=12 4 5| is asymmetric; where B = |—2 0 1 | is a skew-symmetric.

3 5 0 3 -1 0

Example 1.7.4

Fill in the missing entries (marked with x) to produce symmetric (or skew-symmetric) matrices.

X 2 X
X X
-2 X X

Theorem 1.7.2

If A and B are symmetric matrices with the same size, and k is any scalar, then:

1. AT is symmetric.
2. A+ B and A — B are symmetric.
3. kA is symmetric.

4. AB is symmetric ifft AB = BA.

Note that A and B are symmetric matrices and hence A” = A and B” = B. Then,

1. (AT)T = A= AT, Then AT is symmetric.

2. (A+ BT = AT+ BT = A+ B. Then A+ B and A — B are symmetric.
3. (kA)T = kAT = kA. Then, kA is symmetric.

4. AB is symmetric iff (AB)T = AB iff BTAT = AB iff BA = AB.
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Theorem 1.7.3

If A is a symmetric nonsingular matrix, then A~! is symmetric.

Assume that A is symmetric nonsingular matrix. Then
(A—l)T — AT gt

Therefore, A~! is symmetric.

Example 1.7.5

Show that AT A and AAT are both symmetric matrices.

Solution:

It is clear that (ATA)T = AT(AT)T = AT A which shows that AT A is symmetric. In addition,
(AAT)T = (AT)T AT = AAT shows that AAT is also symmetric.

Example 1.7.6

1. If A is nonsingular skew-symmetric matrix, then A=! is skew-symmetric.

2. If A and B are skew-symmetric matrices, then so are A7, A+ B, A — B and kA for any
scalar k.

3. Every square matrix A can be expressed as the sum of a symmetric matrix and a skew-

symmetric matrix.

Solution:

1. Assume that AT = —A. Then (A™1)7 = (AT)™' = (—A)™ = —A~1. That is A is
skew-symmetric.

2. We only show that A + B is skew-symmetric: (A + B)T = AT + BT = —A+ (-B) =
—(A+ B).

3. If A is any square matrix, then A = %(A + AT) + %(A — AT). Then we only need to show

that %(A + AT) and %(A — AT) are symmetric and skew-symmetric matrices, respectively.
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Exercise 1.7.1

Show that if A and B are symmetric matrices, then AB — BA is a skew-symmetric matrix.
Let A be 2 x 2 skew-symmetric matrix. If A2 = A, then A = 0.

If A and B are lower triangular matrices, show that A + B is lower triangular as well.

If A and B are skew-symmetric matrices and AB = BA, then AB is symmetric.

Let A € M, ,. Show that

SA L= DR

(a) AT + A is symmetirc.
(b) A — AT is skew-symmetric.

6. Let A € M,y,. Then A can be written as A = S + K, where S is symmetric matrix and

K is skew-symmetric matrix.

2 -1 3
7. Let A = |0 4 1|. Find a symmetric matrix S and a skew symmetric matrix K
1 -2 -3

such that A = S + K.
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Chapter

2

Determinants

2.1 Determinants

Definition 2.1.1

Let S = {1,2,--- ,n} be a set of integers from 1 to n. A rearrangement of ji,jo, - ,J, of

elements of S is called permutation of S.

Example 2.1.1

For S = {1,2}, we have 2 permutations:
12, and 21.
While, for S = {1,2,3}, we have the following 6 permutations:
123, 132, 213, 231, 312, and 321.

In general, for S = {1,2,--- ,n}, we have n! =n(n —1)(n —2)---3-2- 1 permutations.

Definition 2.1.2

A permutation jijs - - - j, of the set S = {1,2,--- ,n} is said to have an inversion if a larger

integer j, preceedes a smaller one j, for r, s € S. A permutation is called even with a positive
7+ sign or odd with a negative ”—” sign according to whether the total number of inversions

in it is even or odd, respectively.
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Example 2.1.2
If S=1{1,2,3}, then
permutation #inversions even-odd sign inversions
123 0 even + 12 13 23
132 1 odd — 13 12
213 1 odd - 23 13
231 2 even - 23
312 2 even + 12
321 3 odd — B2 31 21
TRUE or FALSE:
* The permutation 52134 has a positive sign. (FALSE).

reason: The number of inversions is 5 which are 5 2,5 1,5 3,5 4, and 2 1. So, this permutation has an

odd number of inversions and a negative sign.

Definition 2.1.3

Let A = (aij) € Myxpn. Then, the determinant of A, denoted by det(A) or ‘A ‘, is
det(A) = Z(i)a1j1a2j2a3j3 000 anjn

where the summation ranges over all permutations jijs - - - j, of the set S ={1,2,--- ,n}. The

sign is taken as + or — according to the sign of the permutation.

Example 2.1.3

Compute the determinant of A =
Q21 Q22

a1 &12]

Solution:

Using the definition, we have det(A) = Y>-(%)ayj, azj,, where jyjo is a permutation of S = {1, 2}.
Thus, j1j2 € {1 2,21} and

det(A) = + a11a22 — a12a9;.
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Example 2.1.4

aix Q12 13
Compute the determinant of A = |ay; @90 aos]-
azy azz2 Aas3

Solution:

Using the definition, we have det(A) = Y (&)aqj, azj,as;,, where jyjajs is a permutation of S =

{1,2,3}. Thus, J1J203 € {123, 132,2 13,231,312,321} and
det(A) = + Q11022033 — Q11023032 — Q12021033 + A12023031 + G13021032 — G13022031 -

Moreover, this formula can be found by taking the sum of the positive product of the diagonal

entries and the negative product of the anti-diagonal entries in the following matrix:

+ + +— — —
a1 a2 @13 G 012
21 22 @23 021 22
a3 asz2 as3 a3 a3z

Determinants of 2 x 2 and 3 x 3 matrices can be evaluated using

I T A= = —

a—; a; a1 G2 a1z ap;x; a2

A = o Ao = Qo1 Q22 Q23 Q21 G99
a31 Aag2 Az aAz1  a32

For the 2 x 2 matrix A;, we get det (A;) = aj1a22 — ajoas;. It is simply the result of ”blue stripe”
product minus "red stripe” product.

While for the 3 x 3 matrix A,, we first recopy the first two columns and then we add up the
product of the blue stripes and subtract the product of the red stripes.

det (Ag) = <a11a22a33 + ai2a03a31 + a13a21a32> — (a13a22a31 + aji1ag3a32 + a12a21a33>.

2

For example, ;

3
=—2 and |0
1

o = O

1
21 =2.
1
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Definition 2.1.4

If A is a square matrix, then the minor of entry a;; is denoted by M;; and is defined to be the
determinant of the submatrix that remains after the i row and j** column are deleted from A.
The number (—1)""7 M;; is denoted by A;; and is called the cofactor of entry a;; .

Moreover, the cofactor matrix denoted by coef(A) = [A;;| where 1 <i,5 < n.

Example 2.1.5

1 2 1
Compute the minors, the cofactors, and the cofactor matrix of A, where A= {0 1 —1].
3 -2
Solution:
1 -1 0 -1 0 1
M = = —17 M = = 37 M = = —3,
11 1 o 12 5 _o 13 3 1
2 1 1 1 1 2
21 1 _o 22 5 23 ]
2 1 1 1 1 2
Mz = = -3, My = =—1, M3 = =1.
31 1 1 32 0 —1 33 0 1
Thus, the cofactors are:
Ay = (-1)’My; = —1, App = (—1)°My; = -3, Az = (—1)"My; = -3,
Ay = (—1)°My; =5, Ay = (—1)*My; = -5, Agz = (—1)°My; =5,
Az = (—1)*My; = -3, Az = (—1)°My; =1, Asz = (-1)°My; = 1.
-1 -3 =3
Therefore, coef(A) = | 5 —5 51.

-3 1 1
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We note that the minors M;; and the cofactors A;; are either the same or the negative of each

other. This results from the (—1)*"/ entry in the cofactor value.

a1; a2 -

It A=

} , then, its sign matrix is [+ ] , and its minros and cofactors are:

A1  G22

Ay =My = a22; Arg = —Myp = —a21; Ay = —My = —aip; and Ay = My = aq;.

Definition 2.1.5

If Ais an n X n matrix, then the number resulted by the sum of multiplying the entries in any

row by the corresponding cofactors is called the determinant of A, and the sums themselves
are called cofactor expansion of A.

That is, the determinant of A using the cofactor expansion along the i'* row is:
det (A) = a;1 A1 + aAig + - - - + QinAin.
While the determinant of A using the cofactor expansion along the j* column is:

det (A) = (Ilelj + a2jA2j + -+ anjAnj'

Theorem 2.1.1

Let A be an n x n matrix, then for each 1 <7 < n we have

det (A) ifi=Fk,
0 if § £ k.

ain Ak + aigAge + -+ AinAgn =

and for each 1 < j<n

det (A) if j =k,
0 if j £ .

arjA1x + agjAok + - + anjAng =
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Example 2.1.6

Compute the determinant of A by using the cofactor expansion method, where A is the matrix

of Example 2.1.5:

Solution:

Here we can choose any row or column to compute the determinant. Using the cofactor expansion

along the 1% row, we get
det (A) = a1 All + a9 A12 + a3 A13 = (1)(—1) + (2)(—3) + (1)(—3) = —10.
Choosing the first row of A and the cofactors of (for instance) the second row of A, we get

a1 Aoy + aja Asg + ars Az = (1)(5) 4+ (2)(=5) + (1)(5) = 0.

Example 2.1.7

Compute det (A) using the cofactor expansion method, where A =

S O NN O
—_ O = W
S = = O
— N N =

Solution:

We use the cofactor expansion along the 1%!-column since it has the most zeros:

3 0 1 5
= (0) A+ (-1)*"(2)]| ¢
1

S = O

1
9 | +(0) Az + (0) Ay
1

)
S =
N

1 |:(—2) [3-1]=-4.
1
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Theorem 2.1.2

If Ais an n x n triangular matrix (upper triangular, lower triangular, or diagonal), then

det (A) = ay1 az -+ Gpp.

Example 2.1.8

We use Theorem 2.1.2 to compute:

3 0 0
2 5 0|=30.
100 1987 2

Can you check the answer using another method?
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Exercise 2.1.1

0 4 4 0
1. Let D = e . Evaluate ‘D‘
1 3 5 3
0 1 2 6
Final answer: |D| = —12.
2. Let A= ate b+f,B: b,andC: ¢ f.Showthat‘A‘:’B’—i—lC‘.
c d | d c d
1 4 2
3. Let A= |5 —3 6|. Compute the cofactors Ay, A1, and Ay3, and show that 5A4;; —
2 3 2
3A12 + 6A13 =0.
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2.2 Evaluating Determinants by Row Reduction

In this section, we introduce some basic properties and theorems to compute determinants.

Theorem 2.2.1

Let A be an n X n matrix.

1. If A is a square matrix with a row of zeros (or a column of zeros), then det (A4) = 0.
2. If A is a square matrix, then det (A) = det (A”).

aix  Giz2 Qi3 il 421 a4zl

Qg1 Q22 Q23| = |G12 Q22 (32

asz1 a4z ass a1z Q23 433

3. If B is obtained from A by multiplying a single row (or a single column) by a scalar k,

then det (B) = kdet (A). This result can be generalized as det (k A) = k™ det (A).

kan kas kasg a3 Q12 Q13
Q21 Q22 ag3 | — k Qg1 Q22 (23
a31 a32 a33 az1 G322 as3

4. If B is obtained from A by interchaning two rows (or columns), then det (B) = — det (A).

Q21 Q22 (23 a1 Q12 Q13
ajr Q12 Q3| — — |QA21 Q22 Q23
a31; G322 G33 a31 G32 G33

5. If B is obtained from A by adding a multiple of one row (one column) to another row

(column, respectively), then det (B) = det (A).

a11 +k ayy  app+k ax a3+ koas air a2 a3
a2 22 23 —|a21 Q22 Q23
asi as2 33 a31 G32 G33

6. If A has two proportional rows (or columns), then det (A) = 0.

al @12 a13
kan kao kags|=0

as a32 a33

7. If A and B are two square matrices, then det (AB) = det (A) det (B).
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Example 2.2.1

Evaluate the determinant of the matrix A, where

2 =2 5 3
A— 6 -6 15 9
0 3 1 9
1 4 2|

Solution:

Note that the second row of A is 3 times the first one. Then, det (A) = 0.

2 -2 5 3 2 -2 5 3
6 —6 15 9 re=3mi=rz2 | 0 0 0 0 -0
0 3 1 9 0 3 1 9
1 4 2 -1 1 4 2 -1
Example 2.2.2
Evaluate the determinant of the matrix A, where
2 =2
A= 3 1
1 4

Solution:

Note that the second row of A is 3 times the first one. Then, det (A) = 0.

2 -2 5| . 142 1 4 2
0 3 1| — Do 3 1| ="EHo 3 1
1 4 2 @ -2 5 0 —10 1
C2<=>C3 1 2 4 r3—T2—73 1 2 4
= (DY o 1 3 = 13
0 (1) —10 0 0 —13
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Example 2.2.3

Evaluate the determinant of the matrix A, where

2 =2 5 1
A - 3 3 1 3
1 1 2 1
4 3 5 6

Solution:

Note that the second row of A is 3 times the first one. Then, det (A) = 0.

2 -2 5 1 -4 1
@ 3 13| - [0 0 -5
1 1 2 1 1 2
4 3 5 6 -1 -3
—4 -1
= (=9
-1 2
Example 2.2.4
a b ¢ 3g 3h 31
Let |d e f|=—6. Compute |2a+d 2b+e 2c+ f]|
g h i d e f
Solution:
We use the properties stated in Theorem 2.2.1:
39 3h 3i 2a+d 2b+e 2c+ f
2a+d 2b+e 2+ f| o> (-D(=1)| d e ;o=
d e f 3g 3h 3 3

2a 2b  2c G
7| = (6)(~6) = ~36.
i
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Theorem 2.2.2

1

If Ais an n x n non-singular matrix, then ‘A‘ # 0 and ‘A‘l ‘ = ﬁ This statement suggests
that if ‘ A ‘ = 0, then A is singular matrix.
Since A is non-singular, A~! exists, then
AATY = I, (take the determinant for both sides)
447 = |5
4l[47] = 1

A‘%Oand’Al‘:ﬁ.

Thus,

Example 2.2.5

Show that if A € M,,y,, is skew-symmetric matrix and n is odd, then ’ A ’ =0.

Solution:
Since A is skew-symmetric, then AT = —A and taking the determinant for both sides
47| = | -4
‘AT’ = (=" ’ Al where n is odd and (—1)" = —1.
al=la| =
Therefore, A‘ = —‘ A‘ which means that ‘A‘ =0.
TRUE or FALSE:
x If A, B € M,y, with \A\ - \B},thenA:B. (FALSE).

reason: I, # —I, while ’Iz‘ =1 and ‘ - 12’ = (—1)? ‘ ]2’ =1.
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Example 2.2.6

Solution:

Since A~! = AT we have

Al_AT<:>—
A7 = AT = o

Show that if A~! = AT, then |A|=1or |A| =

Al = ’A’2:1<:>‘A‘:il.

Example 2.2.7

Solution:

‘21471 (B2)T‘

Let A, B € Msys with\A\zzand\B\:

- 2|47 =s )

—2. Find [2 471 (BY)T|.

wikalkd
8(5) (~2)(~2) =16,




60

Chapter 2. Determinants

Exercise 2.2.1

. Let|d e f|=—6. Compute|2d 2e 2f]|

g h 1 3g 3h 3
Final answer: 36.
Solve for z:
0O 1 0
T 1 B 5 5
1 -1
1 5 -1
Final answer: z = 1.
aq bl C1 bl bg bl — 3b3
. Given that (ay by | =7, evaluate |a; ay ay — 3as|-
as b3 C3 C1 Co C1 — 363

Let A= |b by byl,andB=|by—ay by—ay b —ay| If|A] =—4, find |B|.

© % N o

10.

11.

12.

1 0 0 3
Compute det (A) where A = 2 UG
0 6 3 O
2 3 1 5

[Hint: Simply reduce A to a lower triangular matrix! Find a relation between the first and

the fourth columns.]

a b ¢ —a —-b —c

Final answer: 21.
ap as as 2a3 2a9 2aq

C1 (6)) C3 C3 + 3b3 Co + 362 c1 + 3b1
Final answer: 8.

Let A, B € M,,»,,. Show that, if AB = I,,, then BA = 1,.

If |A B| = 0, then either ’A’ =0or ‘B‘ = 0.

If AB =1, then | A| # 0 and | B| #0.

Show that if A is non-singular and A% = A, then ‘A‘ =1.

Show that for any A, B,C € M, y,, if AB = AC and \A\ £ 0, then B = C.

1 2 4
Find all values of o for which the matrix |1 3 9| is singular.
1 a o
Let A and B be two n X n matrices such that A is invertible and B is singular. Prove that

A~'B is singular.
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13. If A and B are 2 x 2 matrices with det (4) = 2 and det (B) = 5, compute ‘3 A2(AB_1)T‘.
7

14. Let A be a matrix with A™! = . Find det (A).

D =N

N W O
o ot o O
O = O W

61
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3

Euclidean Vector Spaces

3.1 Vectors in R”

In this chapter, we deal with vectors in R, or sometimes we simply call them n-vectors. For instance,

n
(row-vector) X = |2y x9 --- a,|, and (column-vector) Y = y; are vectors in R".
Yn
In the notion of R™, A vector is simply written as X = (x1, 29, -+ ,x,). While A points is written as

X(l‘l,iﬂz, o axn)-

Vecors in R? can be manipulated by arrows starting at initial

point and pointing at terminal point. In the Figure, the @

e . . . . . I:/X" terminal point
vector X has its initial point at P and has its terminal point

initial point
at Q.

For instance, if P(p1,p2, p3) and Q(qi, g2, q3) are points in R, then the vector X is written as
X = }ﬁ = (p1 — q1, P2 — G2, p3 — q3)- This vector is different from its opposite vector —X which
is given by —X = Cﬁ’

3.1.1 Vectors Operations:
Let X = (21,29, -+ ,2,),Y = (y1,Y2, -+ ,yn) € R" and ¢ € R. Then:

1. Adding or substracting two vectors, they must have the same number of components:
XY =(r1xy, 20ty 2, Ly, € R™
2. Multiplying a vector by a scalar:
cX = (cxy,cme, -+ ,cxy,) €ER™
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3. The vector O = (0,0,---,0) € R" is called the zero vector.

4. Two vectors X and Y are said to be equal if x1 =y, 20 = Y2, -+ , Ty, = Yn.

Example 3.1.1

If X =(2,3,-1) and Y = (1,0, 1) are two vectors of R?, then —X = (=2, —-3,1) and 3V — X =
(3,0,3) — (2,3,~1) = (1, -3, 4).

Try to prove the statements in the following two Theorems.

Theorem 3.1.1: The Closure of R” under Vector Addition and Scalar Multiplication

Let X,Y,Z € R™ and let ¢,d € R. Then

1. R™ is closed under vector addition (i.e. X +Y € R"):

(a) X+Y =Y +X,

b) X+ (Y +2)=(X+Y)+Z

(¢) Favector O € R" such that X + O = O + X = X. "additive identity”

(d) for any X € R", 3(—X) such that X + (—X) = (—=X) + X = O. "additive inverse”

2. R™ is closed under scalar multiplication (i.e. ¢ X € R"):

(a) c(X+Y)=cX+cY,
(b) (c+d)X =cX+dX,
(¢) c(dX) = (cd) X,

)

(d) 1X = X, where 1 € R.

Theorem 3.1.2

If X is a vector in R™ and ¢ is any scalar, then

1. 0 X =0.
2. ¢cO=0.
3. (-) X =-X.
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Definition 3.1.1

If X € R”, then we say that X is a linear combination of the vectors Vi, Vs, --- |V, € R" if
it can be expressed as

X=aVi+caVot+ - +c,Vy,

where ¢1,co,- -+ , ¢, are scalars in R. These scalars are called the coefficients of the linear

combination.
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Exercise 3.1.1

Find all scalars ci, ¢o, c3 € R such that
c1(1,2,0) + ¢2(2,1,1) 4+ ¢3(0,0,1) = (0,0,0).

Final answer: ¢; = ¢o = ¢3 = 0. "Try to create a system of linear equations.”
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3.2 Norm and Dot Product in R"

Definition 3.2.1

Let X = (z1,x9, -+ ,x,) and Y = (y1,¥2, -+ ,¥s) in R”. Then

1. The dot product of X and Y is defined as

X'Y=Z$z‘yi=$1y1+$2y2+"'+$nyn-
i=1

2. The norm (or length) of the vector X is defined as

1X || = /a2 + a3+ +a2.

[ Remark 3.2.1

We note that, || X ||> =22 + 22+ --- + 22 = X - X. Therefore, | X | = X - X.

Theorem 3.2.1

If X € R" and ¢ € R, then:

L[ X[ =0
2. | X || =0if and only if X = O.
3. leX I =lelll X1

The proof of the first two parts is easy. So we only prove the third statement of the Teorem.

Let X = (21,29, -+ ,x,). Then ¢ X = (cxy,cxa, -+ ,cx,). Thus,

leX| = \/(cx1)2 + (c22)2+ -+ (czp)? = \/02 (@2 +a3+ - +22)

= lelya?+ad+---+a2=|c|| X]||.
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Definition 3.2.2

A vector of norm 1 is called a unit vector in R”. That is, U is a unit if | U || = 1.

[ Remark 3.2.2: Normalizing a Vector ]

1
If nonzero vector X € R", then U = WX is the unit vector in the same direction as X.
1 1 1
Cleatty, 101 = | 7 X | =| g [1X0 = g 1 X0 =1
Xl Xl Xl

The vectors i = (1,0) and j = (0, 1) are called the standard units in R?.

The vectors i = (1,0,0), j = (0,1,0) and k = (0,0, 1) are called the standard units in R3.

In general, the vectors E; = (1,0,---,0),E;, = (0,1,0,---,0),--- ,E,, = (0,---,0,1) are called
the standard unit vectors in R". Note that any vector X = (1,9, -+ ,x,) € R" is a linear

combination of these vectors:

X =oE +xEy +--- + 1, E,,.

. v,

[ Remark 3.2.3: Another definition of dot product ]

If X and Y are nonzero vectors in R"” and if # is the angle between X and

Y, then Y
XY
cos) = —————  where 0 <6 <.
XY ]
That is X - Y = || X || || Y || cos 6. f}
Since, —1 < cosf < 1, we get e X
1< Y
Xy -

Theorem 3.2.2

If XY, Z € R" and ¢ € R. Then:

1. O- X=X-0=0.
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2. X Y=Y -X.
3.X- Y+2)=XY+X - Zand X - Y -2)=X .Y -X-Z.
4. (X+Y)- Z=X-Z+Y -Zand (X-Y) - Z=X-Z-Y-Z
5. (¢X) Y =X-(cY)=c(X Y).

6. X-X >0and X - X =0 if and only if X = 0.

All parts are easy to prove.

Example 3.2.1

Find the angle between X = (0,1,1,0) and Y = (1,1,0,0).

Solution:

XY
We have cos = —————— where X - Y =0+14+0+0=1 and
| XYl

X =vVe+12+12+02=v2=Y].

1
Therefore, cosf = 3 which implies that § = g

Theorem 3.2.3: Cauchy-Schwarz Inequality

If X and Y are vectors in R”, then | X - Y | < || X | [|Y |

Theorem 3.2.4: Triangle Inequality

I XY, ZeR" then: | X+Y || <||X||+]Y]

By Remark 3.2.1, we have

IX+Y|? = (X+Y) X+Y)=X-X+X.Y+Y . X+Y. Y

= [ X|P+2X-Y+|Y° absolute value.




70 Chapter 3. FEuclidean Vector Spaces

= || X H2 +2|X-Y|+|Y H2 Cauchy-Schwarz Inequality.

IN

IX I+ 20X Y I+ 1Y 1= A X+ 1Y 1)*.

Example 3.2.2

If X and Y are vectors in R”, then || X +Y >+ || X =Y ||* =2 (H X|P+|Y H2)

Solution:

I X+Y P+ X-Y|" = (X+4Y)- (X+Y)+(X-Y)- (X-Y)
= 2(X-X)+2X-Y -2X-Y 42V .Y)
= 2(||X||2+||Y||2)'

[ Remark 3.2.4

If X and Y are in R™, then || X — Y| Z‘HXH—HYH’.

Proof:

Recall that for real values x and a, we have |z| < a iff —a < x < a. That isa > x and a > —z.

Therefore, we simply show that || X =Y || > || X || —||Y ||and | X =Y || > [|Y || = || X ||. First
[ X=X -Y)+Y[<|X-Y[+Y] = | X[|-[Y]<[]X-Y]
For the second inequality, we use the first one (interchinging X and Y) in the following way:

| X-Y|[=lY-X|>]Y|-X] by the first inequality.

Example 3.2.3

If | X||=2and ||Y | =3, what are the largest and smallest values possible for || X — Y [|?

Solution:
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By Triangle inequality, we have || X =Y || < || X || + || Y || = 5 which is the largest values of
|| X —Y||. For the smallest value, we use Remark 3.2.4. That is,

IX-Yiz[IXi-1vi=12-3]=1
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Exercise 3.2.1

1.

. Let U and V be two vectors in R? such that | U || =2 and ||V | = 3.

10.

11.

12.
13.

Use Cauchy-SchwarzaAZs inequality to show that
(ab — cd + zy)* < (a® + d* + y°)(b* + & + 2°)

for all real numbers a, b, ¢, d, x, and y.

Hint: Find two suitable vectors in R3.

Let U,V € R" be unit vectors. Prove that (U +2V) - (2U — V) < 3.

Let 6 be the angle between the vectors U = (4,—2,1,2) and V = (4,2,5,2). Find cos6.
Final answer: %

For any vectors X and Y in R™, show that || X || <[ X —2Y ||+ 2| Y |.

Hint: Triangle inequality.

Let X and Y be two vectors in R™. Prove that || X — Y| < || X + ||Y].

Hint: Triangle inequality.

Find a vector X, of length 6, in the opposite direction of Y = (1,2, —2).

Hint: What is —6 ”—11/” Y?

Let X and Y be vectors in R™ such that | X|| = ||Y||. Show that (X +Y) (X —-Y)=0.

(a) Find the maximum possible value for || 2U + 3V |.
(b) fU -V =0, find ||2U + 3V ||.

Let X, Y € R" Find X -Y given that | X +Y ||=1and | X —Y || =5.
Final answer: —6.

Answer each of the following as True or False:

(a) If U and V are two unit vectors in R", then || U — 6V || > 5.
(b) There exist X,Y € R* such that || X ||=|Y||=2and X - Y =6.
Find all values of a for which X -Y = 0, where X = (a®*—a,—3,—1) and Y = (2,a—1, 2a).

Final answer: a = % or 3.

1 1
If X and Y are vectors in R”, then X - Y = Z||X+Y||2—Z||X—Y||2.
Show that if X -Y =0 for all Y € R”, then X = O. Use the standard unit vectors of R"
for Y.
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14. Show that if X - Z =Y - Z for all Z € R", then X =Y. Use the standard unit vectors of
R" for Z.
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Chapter

4 General Vector Spaces

4.1 Real Vector Spaces

Definition 4.1.1

A real vector space V is a set of elements with two operations @ and ® satisfying the following

conditions. For short, we write (V,®, ®) is a vector space if
() if X,Y €V, then X &Y €V, that is "V is closed under &”: for all X,Y,Z € V

@) XOoY =Y & X,
b) Xe(YoZ)=(XaY)d Z,
(c) there exists O € V such that X 0 =06 X = X,
(d) for each X € V, there exists e € Vsuch that e® X = X e = 0.
(B) if X € Vand ¢ € R, then ¢c® X € V, that is "V is closed under ®”: for all X, Y € V and
for all ¢,d € R
(a) cOXBY)=cOXBcOY,
b) c+d)OX=cOX0do X,
(c) cOde®X)=(cd)OX,

d1eoX=X0l=X.

[ Remark 4.1.1 ]

(R™, +,-) is a vector space. That is, R™ with vector addition and scalar multiplication is a vector

space.
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Example 4.1.1

Consider V = {(z,y,2) : x,y,z € R} with
(1,91, 21) @ (T2, Y2, 22) = (T1 + T2, Y1 + Y2, 21 + 22),

and

cO (z,y,2) = (cx,cy,0).

Is (V,®,®) a vector space? Explain.

Solution:

Clearly, the « conditions are satisfied because this is the usual vector addition and hence V is
closed under @. Thus, we only check on the 5 conditions. Let X = (x1,y1,21), Y = (22, ¥z, 22)

be any two vectors in V, then

L.cO(X+Y)=cO (1 +22,y1 + Yo, 21 + 22) = (cx1 + cxa,cy1 + cyo,0) = (cx1,cy1,0) +
(cxa,cy2,0) = c® X + ¢ ©®Y. This condition is satisfied.

2. (c+d) X = ((c+d)z1, (c+ d)y1,0) = (cx1, cyr,0) + (dxy,dy1,0) = c® X +d©® X. This

condition is satisfied.
3. cO(do X)=c6 (dry,dy,0) = (cdxy, cdy;,0) = (ed) © X. This condition is satisfied.
4. 10X = (x1,91,0) # (1,y1, 21). This condition is NOT satisfied.

Therefore, (V,®,®) is not a vector space.

Example 4.1.2

Let V= {(z,y,2) : z,y,z € R and z > 0} associated with the operations:
(21,91, 21) © (T2, Y2, 22) = (1 + X2, Y1 + Y2, 21 + 22), and c O (v,y, 2) = (cx, cy, cz).

Is (V,®,®) a vector space? Explain.

Solution:

No. If ¢ € R with ¢ < 0, then ¢ ® (z,y, 2) = (cz,cy,cz) € V since cz < 0.




4.1. Real Vector Spaces 7

Example 4.1.3

Is the set of real numbers under the substraction and scalar multiplication a vector space?

Explain.

Solution:

NO. Clearly, for z,y e R, s dy=2—-y#y—xr=yd .

Theorem 4.1.1

Let V be a vector space, X is a vector in V, and c is a scalar, then:

1. The zero vector is unique in V.
2.0X =0.

3. cO=0.

4. ()X =-X.

5.

[fcX=0,thenc=0o0r X =0.

1. Assume that O; and Oy are two zero vectors in V. Then
O1=014+0,=0, = 07=0s.
2. 0X +0X = (04 0)X = 0X. The negative inverse of 0.X, namely —0X, is in V. Hence
0X +0X 4+ (—0X) =0X + (-0X) = 0X =0.

3. O+ 0 = 0. Then ¢(O + O) = cO implies that cO + cO = cO. Adding the negative of cO,
namely —cO, to both sides, we get: cO + cO — cO = cO — cO and hence cO = O.

4. To show that (—1)X = —z, we simply show that X + (—1)X = O. Clearly, X + (-1)X =
(14 (—1))X =0X = O by part (2).

5. If ¢ = 0, then we are done. Otherwise, assume ¢ # 0. Then 2¢X =10 = O (by Part 3).
Hence 1X = X = O.
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Exercise 4.1.1

1. Let V={(z,y,0) |,y € R}, be associated with the operations:
(21,91,0) @ (2, ¥2,0) = (z1 + T2, 1 + 42,0), and c© (z,y,0) = (cx,cy, 0).

Is (V,&,®) form a vector space? Explain. (This is a Vector Space!!).
2. Let V. ={(x,y) | z,y € R}. Define addition and scalar multiplication on V" as follows: for
each (z,y), (¢/,v') € V and a € R,

(z,y)® (2',y) = (z+2,y+y) and a® (z,y) = (ay, ax).

Determine whether V' with the given operations is a vector space. Justify your answer.

3. Consider R? with the operations & and ® where (z,y) ® (z',y') = (2z — 2/,2y — ¢/) and
c® (z,y) = ¢(x,y). Does the property (c+d) © X =c® X &d® X hold for all ¢,d € R
and all X € R?? Explain.

4. Consider the set V = {(z,y,2) : z,y, 2 € R} with the following operations
(Ibyla Zl) D (.sz,yg, 22) = (xl + T2, Y1 + Y2, 21 + 22) and c© (x7y7 Z) = (Za y?'CE)

Is V' a vector space? Explain.

5. Let V ={(z,y,2) : z,y, 2z € R} and define
(z,9,2) ® (a,b,¢c) = (x+a,y+b,2+¢) and kO (z,y,2) = (kz,ky,0).

Show that V' is not a vector space.

6. Consider the set V = {(z,y) | z,y € R} with the following operations
() ® (2',y) = (x — 2,y —y) and kO (z,y) = (kz, ky).

Determine whether (V, @, ®) is a vector space (justify your answer).
7. Let V be a real vector space. Show that 0X = O for any X € V.
8. Let V be a vector space with a zero vector O. Show that the zero vector O of V' is unique.
9. Prove that the negative of a vector X in a vector space V' is unique.
10. Determine whether V' = R is a vector space with respect to the following operations:

XY =2X—-Yand cOX =cX, forall XY € V and for all ¢ € R.
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11. Determine whether V' = {(z,y,2) : x,y,z € R} is a vector space with respect to the
following operations: (z,y,z) ® (2',y/,2') = (z2/,yy’, 22') and ¢ © (z,y,2) = (cz, cy, cz),
for all (x,y, z), (2/,y/,2") € V and for all ¢ € R.

12. Answer each of the following as True or False:

(a) (T) V ={(x,y) € R? : y < 0} is closed under the operation ¢ ® (z,y) = (cz,y).

(b) (F) V ={(x,y) € R* : y < 0} is closed under the operation ¢ ® (z,y) = (cy, ).
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4.2 Subspaces

Definition 4.2.1

Let (V,®,®) be a vector space and let W C V be non-empty. If (W, ®,®) is a vector space,

then W is a subspace of V.

[ Remark 4.2.1

If V is a vector space, then V and {0} are subspaces of V. They are called trivial subspaces

of V.

Theorem 4.2.1

Let (V,®,®) be a vector space and let W be a subset of V. Then, W is a subspace of V if and

only if the following conditions hold:

1. W# o,
2. forallz,y e W, x oy € W,

3. forallz e Wandce R, cOz e W.

Example 4.2.1

Is W={(z,9,0,2?) : 2,y € R and 2 € Z} a subspace of R*? Explain.

Solution:

1. (0,0,0,0) € W and hence W is non-empty.
2. let (z1,y1,0,23), (z2, 12,0, 22) € W, then

(xla Y1, 07 Zf) + <x27y27 07 Z%) - (Il + T2, Y1 + Y2, 07 Z% + Z%) g W since Z% + Z; 7é (Zl + 22)2-

For example, (0,0,0,4), (0,0,0,9) € W while the sum of them (0,0,0,15) ¢ W. Therefore, W is

not a subspace of R*.
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Example 4.2.2

IsW={(z,y,2): x+y+2z=1, where z,y,z € R} a subspace of R®? Explain.

Solution:

Clearly, (0,0,0) ¢ W and hence W is not a vector space and it is not a subspace of R3.

Example 4.2.3

Let W = {(a,b,c,d) : d =2a — b and ¢ = a}. Is (W, +,-) a subspace of R*? Explain.

Solution:

1. (0,0,0,0) € W, then W # ¢,
2. let X = (a1,b1,a1,2a1 - bl) and Y = (a/2,b27a2, 2@2 = bg) Then,

X+Y = (al,bl,a1,2a1—bl)+(a2,b2,a2,2a2—b2)
= (a1 4 ag,b1 + by, a1 + ag,2(ar + az) — (by +by)) € W.

3. for X = (a,b,a,2a—b) € Wand k € R, we have k(a, b, a,2a—b) = (ka, kb, ka,2(ka), —kb) €
W.

Therefore, W is a subspace of R*.

Theorem 4.2.2

If Wi, Wy, --- W, are subspaces of a vector space V, the the intersection of these subspaces is

also a subspace of V.

Let W be the intersection of these subspaces. Then W is not empty since W; contains the zero
vector for all 1 < ¢ < n. Moreover, if X, Y € W, then X, Y € W, for all 7 and hence X +Y € W,
which implies that X +Y € W. Finaly, if ¢ is a scalar and X € W, then X € W, for all + and
hence ¢ X € W, which implies that ¢ X € W. Therefore, W is a subspace of V.
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Definition 4.2.2

Let AX = O be a homogenous system for A € M,,«, and X € R". We define the null space
(or the solution space of AX = O) of A by

W={X : AX = O} CR".

Theorem 4.2.3

The solution space of the homogeneous system AX = O (null space of A), where A is m X n

matrix and X € R" is a subspace of R".

Let W= {X : AX = O} C R" be the null space of A. Then

1. Clearly, W # ¢ since AX = O always has a solution (either trivial or non-trivial),

2. f X,)Y € W, then AX = AY = O. But, A (X +Y)=AX + AY = O+ O = O. Thus,
X+YeWw,

3. For any ¢ € R and X € W, we have A(cX) = cAX = cO = O, thus ¢X € W.

Therefore, W is a subsapce of R™.

If AX = Bwith B# O and A € M,,», and X € R". Then W = {X : AX = B} C R" is not
necessarily a subspace of R"”. Simply, the system AX = B might have no solutions and then W
is empty.

Definition 4.2.3

Let X1, Xy, -+, X, be vectors in a vector space V, a vector X € V is called a linear combina-

tion of the vectors X, X, -+, X, if and only if X = ¢; Xy + o X + - + ¢, X, for some real

numbers ¢y, ¢, - -+, Cp.
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Example 4.2.4

Determine whether the vector X = (2,1,5) is a linear combination of the set of vectors

{Xl,Xz,Xg} where X1 = (1,2, 1), XQ = (1,0,2), and X3 = (1, ]_,0)

Solution:

X is a linear combination of X, X5, X3 if we find numbers ¢q, ¢9, c3 so that X = ¢; X7 + o Xo +

c3X3. Consider ¢1(1,2,1) +¢2(1,0,2) +c3(1,1,0) = (2,1, 5), this is a system in three unknowns:

C1+ Cy+cC3 2
261 + 0+ Cs = 1
c1 + 262 +0 = 5
So, we solve the system:
1 1 1712 1 1 1 2 1
2 0 1 1 ro—21r1—"T2 O _2 _1 _3 7213 O Tl ro—T1
r3—T1—T3 r3+2r2ﬁr3
1 2 015 0 1 -1 3 0
1 0 2| — L 1 0 2 —1 1 0 0 1
—373 73 r1—2r3—ry
0 1 -1 3 — |0 1 -1 3 m 0O 1 0 2
0 0 -3 3 0 0 1| -1 0O 0 1| -1
C1 1
Therefore, |¢,| = | 2| is a solution. Thus, X = X; 4+ 2X, — X3 (check!).
C3 -1

Note that we can solve the problem as follows: The matrix of coefficient above has determinant
equals to 3 and hence the system has a unique solution. Therefore there are ¢y, ¢y, and c3 satis-
fying the linear combination equation. This show that X is a linear combination of Xi, X5, X3

and we are done without solving the system.

Definition 4.2.4

Let S = {Xj, Xy, -+, Xi} be a subset of a vector space V. Then, the set of all vectors in V that

are linear combination of the vectors in S is denoted by span S or span {X;, X, -, Xi}.
Moreover, if W = span S then W is a subspace of V and we say that S spans W or that W is
spanned by S.
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Theorem 4.2.4

If S ={X1,Xs,---,Xx} is a nonempty set of vectors in a vector space V, then span S is a

subspace of V.

Let W=span S ={7:7 =Xy +cXs+ -+ Xy} CV. Then,

1. W#£ ¢psince Z =X+ Xo+ -+ X, e Wfor¢gg=1foralli=1,2,--- k,
2. let Z1 =1 X1+ Xo+ -+ Xp, Zo =d1 X1 +do Xo+ -+ -+ dp X € W, then

Zy+Zy=(c1+di)Xai+ (ca+do)Xo+ -+ (cpr +di) X, €W,
3. forceRand Z =1 X1+ Xo+ -+ X € W, we have
Z=ccrXi+ccaXog+ - +cep X €W,

Therefore, W = span S is a subspace of V.

Theorem 4.2.5

If S is a nonempty set of vectors in a vector space V, then span S is the smallest subspace of

V that contains all of the vectors in S. That is, any other subspace that contains S contains

span S.

Example 4.2.5

Let S = {(1,1,0,1),(1,—1,0,1),(0,1,2,1)}. Determine whether X and Y belong to span S,
where X = (2,3,2,3), and Y = (0,1,2,3).

Solution:

For X, consider the system X = (2,3,2,3) = ¢;(1,1,0,1) + ¢2(1,—1,0,1) 4+ ¢3(0,1,2,1). This
system has the unique solution: ¢; = 2,29 = 0,c3 = 1. Thus, X belongs to span S.
For Y we consider the system Y = (0,1,2,3) = ¢1(1,1,0,1) + ¢2(1,—1,0,1) 4+ ¢5(0,1,2,1). This

system is inconsistent and has no solutions. Thus, Y does not belong to span S.
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Recall that any vector in R™ can be written as a linear combination of the standard unit vectors

{Ey, Ey, -+ ,E,}. Thus, {Ey, Es,--- , E,} spans R".

We now go back to show how can we solve Example 4.2.3 by three different method. One method

was already shown in that example.

Example 4.2.6

Let W = {(a,b,¢,d) : d = 2a — b and ¢ = a}. Is (W, +,-) a subspace of R*? Explain.

Solution: Definition

We simply show it by the meaning of the definition of subspaces. Look at the Example 4.2.3.

Solution: Null Space

W = {(a,b,c,d) :2a—b—d=0 and a —c= 0}.

2 -1 0

That is W is the solution space of AX = O where A = . |

_01] and X = (a,b,c¢,d).

Therefore, W is a subspace of R*.

Solution: The Span

W = {(a,b,a,2a —b) :a,b € R} ={a(1,0,1,2) +5(0,1,0,—1) : a,b € R}.

Therefore W = span {(1,0,1,2),(0,1,0,—1)}. That is W is a subspace of R*.

Example 4.2.7

Let S = {Xi, Xy} where X; = (1,1,0), and X5 = (1,1,1). Does S spans R3? Explain.

Solution:

Let X = (a,b,c) be any vector in R3. Consider
c1(1,1,0) + c2(1,1,1) = (a,b,c).

Note that we can not use the determinant argument here since we have no square matrix. Thus,
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solving the system, we get

1 a 1 1 a
1 bl 22010 0| b—al -
0 c 0 1 c

This system has no solution if b — a # 0. Therefore, X is not a linear combination of S and S

does not span R3,

Example 4.2.8

Let S = {X{, Xy} where X; = (1,1,0), and X5 = (1,1,1). Does S spans R3? Explain.

Solution:

Let X = (a,b,c) be any vector in R3. Consider
c1(1,1,0) + c2(1,1,1) = (a,b,c).

Note that we can not use the determinant argument here since we have no square matrix. Thus,

solving the system, we get

1 a 1 1 a
1 bl 2222 10 0| b—al-
0 1] ¢c 0 1 &

This system has no solution if b — a # 0. Therefore, X is not a linear combination of S and S

does not span R3.
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Exercise 4.2.1

1.

Let XY € R" and W = {Z:Z =aX +bY, fora,b € R}. Is W a subspace of R"?
Explain.

Let X; = (1,0,2), Xy = (2,0,1) and X3 = (1,0, 3) be vectors in R3. Determine whether
the vector X = (1,2,3) can be written as a linear combination of X;, X5, and Xj.
Determine whether the subset W = {(a, a++/2, Sa) D a€ R} of R? is a subspace of R3.
Determine whether the vectors X; = (3,0,0,0), X5 = (0,—1,2,1), X3 = (6,2, —6,0), and
X, = (3,-2,3,3) spans the vector space R*.

Show that the solution set of a homogeneous linear system AX = O in n unknowns is a

subspace of R™.

. Let W = {(a,2a,b,a — b) : a,b € R} be a subset of R*. Show that W is a subspace of R*.

Determine whether W; and W, are subspaces of R*.

(a) Wy = {(a,b,¢,d) : a*> +V*+ A+ d* > 0}.

(b) Wy = {(a,b,¢,d) : a+3b—2c+4d =0 and a — 5b + 4c + 7d = 0}.
Determine whether W; and W, are subspaces of R3.

(a) Wy ={(a,b,c) : a—c=b}.

(b) Wy = {(a,b,c) : ab > 0}.
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4.3 Linear Independence

Definition 4.3.1

The set of vectors S = { X1, Xy, -+, X,,} in a vector space V is said to be linearly dependent

if there exist constants ¢y, co, - -+ , ¢, not all zeros, such that
Cle -+ CQXQ =P 9 e 0 F Can =0.

Otherwise, S is said to be linearly independent. That is, X;, X5, -, X,, are linearly inde-

pendent if whenever, ¢; X7 + o Xs + -+ - + ¢, X,, = 0, we must have ¢c; = cy =--- = ¢, = 0.

Note that the standard unit vectors are linearly independent in R™ since the homogeneous system
¢ (1,0, ,0)+¢3(0,1,-++,0) + -+ +¢,(0,0,--- ,1) = (0,0,--- ,0)

clearly has only the trivial solution ¢; =c; =--- =¢, = 0.

Example 4.3.1

Determine whether X; = (1,0,1,2), X, = (0,1,1,2), and X3 = (1,1,1,3) in R* are linearly

independent or linearly dependent? Explain.

Solution:

We solve the homogenous system: ¢; X7 + c3 X5 4+ ¢3 X3 = 0. That is,

o = O =
O
W = = =
o O o O
o O O
o O =k O
O = O O
o o O O

Therefore, ¢c; = ¢ = ¢3 = 0 and thus X, X5, X3 are linearly independent.
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Example 4.3.2

Determine whether the vectors X; = (1,2,—1), Xy = (1,-2,1), X3 = (=3,2,—1), and X, =
(2,0,0) in R3 is linearly independent or linearly dependent? Explain.

Solution:

Consider the homogenous system: ¢; X1+ coXo 4+ c3X34+ ¢4 X, = 0. This system has a non-trivial
solutions because the number of unknowns (4) is greater than the number of equations (3).
Therefore, X, X5, X3, X4 are linearly dependent.

In addition, we can show that this set is linearly dependent by the mean of r.r.e.f. as follows:

1 -3 210 1 0 -1 1|0
= 2 0(0f—>--—10 1 -2 1]0]|-
-1 1 =1 010 0 0 0 010

From the reduced system above, we see that (from the third column) X3 = —X; — 2X5 and that
(from the fourth column) X, = X; + X.

Theorem 4.3.1

A set S with two or more vectors is

1. Linearly dependent iff at least one of the vectors in S is a linear combination of the other
vectors in S.

2. Linearly independent iff no vectors in S is a linear combination of the other vectors in .S.

[ Remark 4.3.1

Let S = {Xi, Xy, -+, X,,} be a set of vectors in R" and let A be an n X n matrix whose columns

are the n-vectors of S. Then,

1. if A is singular, then S is linearly dependent,

2. if A is non-singular, then S is linearly independent.




90 Chapter 4. General Vector Spaces

Theorem 4.3.2

1. A set that contains O "the zero vector” is linearly dependent.
2. A set with exactly one vector is linearly independent iff that vector is not O.
3. A set with exactly two nonzero vectors is linearly independent iff neither vector is a scalar

multiple of the other.

Example 4.3.3

For what values of a are the vectors (—1,0,—1),(2,1,2),(1,1,«) in R3 linearly dependent?

Explain.

Solution:

We want the vectors to be linearly dependent, so consider the system ¢;(—1,0, —1)+c2(2,1,2) +
c3(1,1,0) = (0,0,0). This system has non-trivial solutions only if ‘A‘ = 0, where A is the

matrix whose columns are [—1,0,—1]7,[2,1,2]7, and [1, 1, a]*. That is,

|A|= s 0 <= —(@—2)—(2-1)=0 <= 2-a-1=0 < a=1

Therefore, if & = 1 the vectors are linearly dependent. Otherwise if & € R\{1}, the vectors are

linearly independent.

Theorem 4.3.3

Let S = {X1, Xs, -+, X,,} be aset of vectors in R". If m > n, then S is linearly dependent.

Example 4.3.4

Suppose that S = {X;, Xo, X3} is a linearly independent set of vectors in a vector space V. Show
that 7' = {Y1, Y2, Y3} is also linearly independent set, where Y] = X; + X5 + X3, Yo = Xo + X3,
and Y3 = X3

Solution:
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Consider the system ¢1Y; + ¢oYs 4+ ¢3Y3 = 0. Therefore,

aY, + oYy + c3Ys = 0

(X1 + Xo+ X3) + X+ X3) + c3(X3) = 0
aXi+aXe+aXs + cXetcXs + X3 = 0
(c)X: 4+ (a+c)Xe 4+ (a+ec+ce3)Xs 0

But X, X5, X3 are linearly independent, thus ¢; = ¢ + ¢ = ¢1 + ¢ + ¢3 = 0. Therefore,

¢y = co = c3 = 0 and hence T is linealry independent.

Example 4.3.5

Suppose that S = {X;, Xy, X3} is a linearly dependent set of vectors in a vector space V.
Show that T' = {Y7,Y3, Y3} is also linearly dependent set, where Y1 = X, Y5 = X; + X, and
Ys=X+Xo+ X3

Solution:

Consider the system c¢1Y; + ¢oYs 4+ ¢3Y3 = 0. Therefore,

aYr + cYs + Y = 0
alXi) + eXi+X) 4+ aXi+Xe+X3) = 0
(cit+ect+e)Xi +  (2tce)Xe + (c3) X3 = 0

But X, X5, X5 are linearly dependent, thus at least one of ¢; +co+c3, co+c¢3, and c3 is non-zero.

Therefore, one of ¢y, ¢, 3 is non-zero and hence T is linealry dependent.

| Remark 4.3.2

The set of linearly independent vectors should be non-zeros distinct vectors.

| Remark 4.3.3

>

Let S1,.55 be two subsets of a vector space V with S; C S5. Then,

1. if S} is linearly dependent, then S5 is linearly dependent,

2. if Sy is linearly independent, then S is linearly independent.
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Example 4.3.6

Show that if S = {X;, Xy, -+, X, } is a linearly independent set of vectors, then so is any subset
of S.

Solution:

Let T'={Xy, -+, Xy} with £ <n. As S is linearly independent set, ¢; X1+ - - ¢, X,, = O implies
that ¢; = --- = ¢, = 0. To show that T is linearly independent, we show that ¢; = --- = ¢; = 0.

Consider the system ¢ X; + - -+ + ¢, X = O. Then
aXi+ X+ -+ X + (0) X1 + -+ (0) X, = O.

This system has only the trivial solution and hence ¢; = --- = ¢ = 0. Therefore, T is linealy

independent.

Note that if S = {X;, X, X3} is a linear independent set, then as we have seen in the previ-
ous example the sets { X1, Xo}, {X1, X3}, {Xo, X3}, {X1}, {X2}, and {X3} are also linearly

independent.

Example 4.3.7

Show that if S = {X;, X, X3} is a linearly dependent set of vectors in a vector space V, and X,
is any vector in V that is not in S, then {X;, X3, X3, X4} is also linearly dependent.

Solution:

Since S is linealy dependent set, the homogeneous system ¢y X7 + 2 X5 + ¢3X3 = O has a non
trivial solution (cq, ¢o, ¢3). Then the homogeneous system ¢1 X7 + 2 X5 + ¢3X3 + ¢4 Xy = O also

has a nontrivial solution (c1, ¢z, c3,0).
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Exercise 4.3.1

1. Show that if { X3, X} is a linearly dependent set, then one of the vector is a scalar multiple
of the other.

2. Show that any subset of a vector space V contains the zero vector is a linearly dependent
set.

3. Show that if {X7, X5, -+, X,,} is a linearly dependent set, then we can express one of the
vectors in terms of the others.

4. Let X,Y,Z € R" be three nonzero vectors where the dot product of any (distinct) two
vectors is 0. Show that the set {X,Y, Z} is linearly independent.
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4.4 Basis and Dimension

Definition 4.4.1

A set S ={X1, Xy, -+, X,,} of distinct nonzero vectors in a vector space V is called a basis iff

1. S spans V (V = span §),

2. S is linearly independent set.

The dimension of V is the number of vectors in its basis and is denoted by dim(V).

Example 4.4.1

Show that the set S = {X; = (1,0,1), Xy = (0,1, —1), X3 = (0,2,2)} is a basis for R.

Solution:

To show that S is a basis for R?, we show that S is a linearly independent set that spans R®.
1. S is linealy independent? Consider the homogenous system
c1(1,0,1) 4+ ¢2(0,1, —1) 4+ ¢3(0,2,2) = (0,0,0).

This system has a trivial solution if ‘A‘ # 0, where A is the matrix of coefficients. That

is,

O © o
A= 0 1 2= | |=2-(-2)=4#0
1 -1 2 B

Thus, the system has only the trivial solution and hence S is linearly independent.
2. S spans R3? For any X = (a,b,c) € R, consider the nonhomogenous system:
C1(17 07 1) + 02(07 ]-7 _]-) + C3<07 27 2) = (CL, b? C)'

Since the ‘A‘ # 0 where A is the matrix of coefficients, the system has a unique solution

and thus S spans R3.

Therefore, S is a basis for R3.
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| Remark 4.4.1

The set of standard unit vectors {E;, Eq,--- JE,} € R" forms the standard basis for R” and
hence dim(R") = n.

Theorem 4.4.1

Let S = {X;, X5,---, X,,} be a basis for a vector space V. Then, every vector in V can be

written in exactly one way as a linear combination of the vectors in S.

Let X € V. Since S is a basis of V, then S spans V. That is, we can write

X = aXi+eXe+--+c, X, and (4.4.1)
X = diXi+dyXo+---+d,X,. (4.4.2)

By substracting Equation 4.4.2 out of Equation 4.4.1, we get
0= (Cl — dl)Xl + (CQ — d2)X2 9P 000 IF (Cn - dn)Xn

But S is linearly independent set (it is a basis). Thus, ¢; —d; =0, --- | ¢, —d,, = 0. Therefore,
c1 =dy, co=dy, -+, ¢, = d,, and hence X can be written in one and only one way as a linear

combination of vectors in S.

Theorem 4.4.2

Let V be a finite-dimensional vector space, and let {X7, Xs,--- | X,,} be any basis:

1. If a set has more than n vectors, then it is linearly dependent.

2. If a set has fewer than n vectors, then it does not span V.

Theorem 4.4.3

All bases for a finite-dimensional vector space have the same number of vectors.




96 Chapter 4. General Vector Spaces

Theorem 4.4.4: The Plus/Minus Theorem

Let S be a nonempty set of vectors in a vector space V. Then

1. If S is linearly independent and X is a vector in V not in span S, then the set S U {X}
is linearly independent.
2. If X is a vector in S that is a linear combination of the other vectors in S, then S — {X}

span the same space. That is, span S = span (S — {X}).

Example 4.4.2

Find a basis for and the dimension of the subspace of all vectors of the form (a,b, —a — b, a —b),

for a,b € R.

Solution:

Let W = {(a,b,—a — b,a —b) |a,b € R} C R%. Let X be any vector of W, then
X =(a,b,—a—b,a—>b) =a(1,0,—1,1) +b(0,1,—-1,—1) € W.

Therefore, S = {(1,0,—1,1),(0,1,—1,—1)} spans W.
Clearly,
61(17 0,1, 1) + 02(07 ]-7 _]-> _1) = (07 0,0, O)

holds only if ¢; = ¢5 = 0 which shows that S is linearly independent. That is, S is a basis for W
and dim(W) = 2.

Example 4.4.3

Find a basis for and the dimension of the solution space of the homogeneous system

1 + T2 + 2, = 0
To — ZT3 + Ty = 0
1 + X9 + 21’4 = 0

Solution:
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We first solve the system using Gauss-Jordan method:

1 0 20 1 o 1 1]0
r.r.e.f.
0 1 -1 1|0f= - ~lo (1 -1 1]0
1 0 0 0 0 0 010
Thus the solutions are: x1 = —x3 — x4; 9 = 3 — x4 and x3 = t and x4 = r for ¢, € R. That

is the solution space of the homogeneous system is W = {(—t — r,t —r,t,r) : t,r € R}.
Therefore, any vector X in W is of the form: X = ¢(—1,1,1,0) + r(—1,—1,0,1) which means
that S = {(-1,1,1,0),(—1,—1,0,1)} spans W.

As S'is a linearly independent set (none of the vectors is a scalar multiple of the other), S forms

a basis for W, and hence the solution space has dimension 2.

Theorem 4.4.5

Let V be an @—dimensional vector space, and let S = {X;, X5, -- ,X®} be a set in V. Then,

S is a basis for V iff S spans V or S is linearly independent.

The set S = {X; = (1,5), Xy = (1,4)} is linear independent in the 2-dimensional vector space
R2. Hence, S forms a basis for R2.

Moreover, considering S = {X; = (1,0,5), X = (1,0,4), X3 = (1,1,1)}, we see that X; and X5
form a linear independent set in the zz-plane. The vector X3 is outside of the xz-plane, so the

set S is linearly independent set in R3. Hence, S forms a basis for R3.

Example 4.4.4

Find all values of a for which S = {(a?0,1),(0,a,2),(1,0,1)} is a basis for R3.

Solution:

Since dim(R?) = 3 = size of S, it is enough to show that S is linearly independent (or it spans

R3) to show that it is a basis for R?. Consider ¢;(a?,0,1) + ¢2(0,a,2) + ¢3(1,0,1) = (0,0,0).
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Clearly, S is linearly independent if ‘A‘ # 0, where A is the coefficient matrix. That is,

2

a 0 1
© @ @©|=a@®-1)#0 = a#0anda# =L
12 1

Therefore, S is a basis for R? if a € R\{—1,0,1}.

Theorem 4.4.6: Reduction and Extension Theorem

Let S be a finite set of vectors in a finite-dimensional vector space V.

1. If S spans V but is not a basis, then S can be reduced to a basis for V by removing
appropriate vectors from S.
2. If S is a linearly independent set that is not a basis for V, then S can be extended to a

basis for V by adding appropriate vectors to S.

[ Remark 4.4.2: How to construct a basis? ]

Let V be a vector space and S = {X;, Xy,--+, X,,} is a subset of V. The procedure to find a
subset of S that is a basis for W = span S is:

1. form the linear combination ¢; X7 + o Xo +--- + ¢, X,, = 0,
2. form the augmented matrix of the homogenous system in step (1),
3. find the r.r.e.f. of the augmented matrix,

4. Vectors in S corresponding to leading columns form a basis for W = span S.

Example 4.4.5

Let S = {X; =(1,0,1), X, = (1,1,1), X3 = (0, —1,0), X, = (2,1,2)} be a set of vectors in R3.
Find a subset of S that is a basis for W = span S, and find the dimension of W.

Solution:

We form the homogenous system: ¢y X7 + coXs + c3 X35+ ¢4 X4 = O to find a linearly independent
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subset of S:
1 0 20 1) o 1 1]0
r.r.e.f.
0 1 -1 1[0f= - ~lo (O -1 1]0
1 0 20 0 0 0 00

The leading entries are pointing (appear) on the first two columns, namely columns 1 and 2.
Therefore, {X;, Xo} is linearly independent and it spans W. Thus, {X;, X5} is a basis for
W = span S and dim(W) = 2.
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Example 4.4.6

Find a basis for R* that contains the vectors X; = (1,0,1,0) and X, = (—1,1,—1,0).

Solution:

Consider the set S = { X}, X», E;, Ey, E3, E;}. The set S spans R but it contains some linearly

dependent vectors. In order to delete those, we follow the following procedure:

1 =1 1.0 0 00 1 o o0 1 1 0|0
0 1 0 1 0 0|0 _ rret o O 0o 1 0 0|0
1 -1 0 0 1 0|o0| 1o 0 (@O 0o -1 0|0
0 000 0 1|0 o 0o 0 0 0o (Do

The leading entries pointing on the columns 1, 2, 3, and 6. Therefore, the set {X;, X5, E1, E4}

is a basis for R* containing X; and Xs.

Theorem 4.4.7

If W is a subspace of a finite-dimensional vector space V, then

1. W is finite-dimensional.
2. dim(W) < dim(V).
3. W=V iff dim(W) = dim(V).
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Exercise 4.4.1

1. Show that the set S = {X1, X5, X3, X,} is a basis for R?, where
X, =(1,0,1,0), Xp = (0,1, -1,2), X5 = (0,2,2,1), and X, = (1,0,0, 1).

2. Let S = {X1, Xs, X3, X4, X5} be a set of R* where X; = (1,2,-2,1), Xy = (=3,0,—4,3),
X3=1(2,1,1,-1), Xy = (-3,3,-9,6), and X5 = (9,3,7,—6). Find a subset of S that is a
basis for W = span S. Find dim(W). Final answer: {X;, X»} is a basis for W and the
dimension is 2.

3. Find the dimension of the subspace of all vectors of the form (a,b,c,d) where ¢ = a —b
and d = a + b (for a,b € R). Final answer: the dimension is 2.

4. Find the dimension of the subspace of all vectors of the form (a+c¢,a+b+2¢c,a+c,a—b)
where a, b, c € R. Final answer: the dimension is 2.

5. Let S = {Xj, Xy, X3} be a basis for a vector space V. Show that 7" = {Y, Y2, Y3} is also
a basis for V, where Y7 = X7 + Xo + X3, Y5 = X5 + X3, and Y3 = X5.

6. Find a standard basis vector for R® that can be added to the set
{X;=(1,1,1), Xy, = (2,-1,3)} to produce a basis a basis for R®. Final answer:
any vector of the standard basis will work.

7. Theset S = {X; = (1,2,3), Xo = (0,1,1)} is linearly independent in R®. Extend (enlarge)
S to a basis for R?. Final answer: S = {X; = (1,2,3), X, = (0,1,1), X3 = (1,0,0)}

8. Let S = {X; =(1,0,2), Xy = (—1,0,—1)} be a set of vectors in R3. Find a basis for R?
that contains the set S. Final answer: {(1,0,2),(-1,0,—1),(0,1,0)}.

9. Let S = {X3,Xs,---,X,,} be a set of vectors in a vector space V. Show that S is a
basis for V' if and only if every vector in V' can be expressed in exactly one way as a linar
combination of the vectors in S. » = 7 : Use Theorem 4.4.1. And for » <= 7 : Show the

linear independence of S using the uniqueness.
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4.5 Row Space, Column Space, and Null Space

Definition 4.5.1

11 12 ot Qip
21 Qo -+ Q2p
Let A = € M, xn-
am1 Am2 e Qmn
The set of rows of A are:
X1 = [Cln [0 aln]
Xo = [&21 Qg v @2n] B
eR
Xm = [aml Am2 te amn]

These row vectors span a subspace of R™ which is called the row space of A. Moreover, the
row rank of A = dim(row space of A).

Similarly, the columns of A are:

a11 12 A1n

21 @22 A2p, m
}/i - . ) }/2 - . ) e ) YTL - . E R .

am1 Am2 Amn

These column vectors span a subspace of R” which is called the column space of A. Moreover,
the column rank of A = dim(column space of A).
Moreover, the solution space of the homogeneous system AX = O (which is a subspace of R")

is called the null space of A.

[ Remark 4.5.1 ]

7

Let A be any m X n matrix, then

1. the row rank of A = the column rank of A = the rank of A = the rank of AT.
2. n = the nullity of A + the rank of A.
3. m = the nullity of AT + the rank of A.
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Theorem 4.5.1

If A and B are two m x n row equivalent matrices, then they have the same row space.

In Example 4.5.1, we illustrate how to find bases for the row and column spaces of a given matrix.

Example 4.5.1

1 -2 0 3 -4
Lot A — 3 2 8 1 4
7T 2 3

-1 2 0 4 -3
1. find a basis for the row space of A,
2. find a basis for the column space of A,
3. find a basis for the row space that contains only rows of A,

4. find a basis for the column space that contains only columns of A.

Solution:

1. To find a basis for the row space of A, we have to find the r.r.e.f. of A, then the set of

non-zero rows of the r.r.e.f. forms a basis for the row space.

1 -2 0 3 -4 o a0 s
32814 r.r.e.f 01101<_
=3 560000 ~ <
> 51 s PR &
- 0 —3 0000 0

Therefore, the set {(1,0,2,0,1),(0,1,1,0,1),(0,0,0,1,—1)} forms a basis for the row space
of A. Note that the row rank of A = 3. (That is, nullity of A =5 - 3 = 2).

2. To find a basis for the column space of A, we have to find a basis for the row space of A”.

Therefore,

103 2 -1 - e
9 9 3 9 1 0 0 _229 <—
AT=1 0 8 7 ol ~ St & 0 10 £ —
0 0 1 £ |~

3

i i ; ;l 0 0 0 O

L e 0 0 0 O
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Therefore, the set {(1, 0,0,%1),(0,1,0, ;—‘f), (0,0,1, %)} is a basis for the row space of AT
and it is a basis for the column space of A. The column rank of A = 3. (That is, nullity

of A=5-3=2).

3. To find a basis for the row space of A that contains only rows of A, we do as follows:

13 2 - - "

-2 2 3 2 100 3

—49

AT=| 0 8 7 ol ~ gref 0 10 g
3 1 2 4 0 01 3
000 0

-4 4 3 3] 000 0
T i

Then, the leading entries are pointing to column 1, column 2, and column 3 in the r.r.e.f.

of AT which correspond to row 1, row 2, and row 3 in A. Thus,
{(1,-2,0,3,-4),(3,2,8,1,4),(2,3,7,2,3)}
forms a basis for the row space of A containing only rows of A.

4. To find a basis for the column space of A that only contains columns of A, we do the

following;:
; _; g ‘? _i 1 020 1
r.r.e.f.
) e 5 ~ Lo ~ 0 1 1 0 1
0O 0 0 1 —
-1 2 0 4 -3 0000 0O
T 1 T
Then, the leading entries are pointing to column 1, column 2 , and column 3 in the r.r.e.f.
of A . Thus,

{(1,3,2,-1),(-2,2,3,3),(3,1,2,4)}

forms a basis for the column space of A containing only columns of A.
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* Rank and Singularity:

Theorem 4.5.2: Equivalent Statements

If A is an n x n matrix, then the following statements are equivalent:

A is invertible.

AX = O has only the trivial solution.

A is row equivalent to I,,.

AX = B has a unique solution for every n x 1 matrix B.

det (A) # 0.

The column vectors of A are: linearly independent; span R"; and form a basis for R".
The row vectors of A are: linearly independent; span R"; and form a basis for R".

A has rank n.

A has nullity 0.

2 L N &8 & = 89 B =

If A is an m x n matrix, then the smallest possible rank of A is 0 (when A is the zero matrix),

while the largest possible rank of A:

1. n (if m > n): When every column of the r.r.e.f. of A contains a leading 1.

2. m (if m < n): When every column of the r.r.e.f. of A contains a leading 1.
Also: the largest nullity of A is n (when rank is 0) and the smallest nullity of A is:

1. 0 (if m > n): When every column of the r.r.e.f. of A contains a leading 1.

2. n—m (if m < n): When every column of the r.r.e.f. of A contains a leading 1.

Let A be a 3 x 5 matrix. Then: the largest possible rank of A is 3 and the smallest possible
rank of A is 0 (the zero matrix). This is because, rank of A = row rank = column rank, and we
only have 3 rows. Also, the largest nullity of A is 5 (zero matrix) and the smallest nullity is 2
(when rank of A = 3). Moreover, the largest possible rank of AT is 3, and the largest possible
nullity of AT is 3.
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Example 4.5.2

If Aisa b x 3 matrix, show that A has linearly dependent rows.

Solution:

The largest possible rank of A is 3 and thus A must has at least two linearly dependent rows.

Example 4.5.3

a a a . a a a a a a
Show that A = |"" "2 13| hasrank 2 iff at least one of |~ 11 “12| |7 T3 Tz T3
Q21 Q22 Q23 Q21 Q22 a1  A23 Q22 Q23
1S nonzero.
Solution:

We have: rank of A is 2 iff column rank of A is 2 iff basis of column space has two columns iff

two columns are linearly independent iff one of the determinants is nonzero.

Example 4.5.4

1 1 4 1 2
0 1 2 1 1
Let A= |0 0 0 1 2|. Find the rank of A and the nullity of A.
1 -1 0 0 2
2 I 6 0 1]
Solution:

To find the rank and the nullity of A, we find any basis of any kind of A. So,

1 1 4 1 2 ] ]
0 1 2 1 1 f 1 0 2 0 1 |
0 0 0 1 2~ % = 8 (1) g (1) _21 :
. 0000 0
2 1 6 0 1 o000

Therefore {(1,0,2,0,1),(0,1,2,0,—1),(0,0,0,1,2)} is a basis for the row space of A and rank(A)
= 3 which implies that nullity of A =5 —3 = 2.




106 Chapter 4. General Vector Spaces

Example 4.5.5

2 0 3 -4
Let A = 2R
3 7 2 3
1 2 0 4 -3

1. Find bases for the row and column spaces of A,

2. Find a basis for the null space of A. Find nullity of A and nullity of A”.

3. Does X = (1,2,4,3,0) belong to the row space of A? Explain.

4. Express each column of A not in the basis of column space as a linear combination of the

vectors in the basis you got in step 1.

Solution:

1. To get bases for the row space and column spaces of A, we do the following:

e e 1 02 0 1 [k
3 2 8 ]_ 4 - rref ) ~ 0 1 1 0 1 -
2 3 72 3 00 0 1 -1 [
-1 2 0 4 -3 0000 0
T 1 T

Thus, the set {(1,0,2,0,1),(0,1,1,0,1),(0,0,0,1,—1)} forms a basis for the row space of
A, while the set {(1,3,2,—1),(-2,2,3,2),(3,1,2,4)} forms a basis for the column space
of A that only contains columns of A, but this is fine since there is no restrictions on the
basis of column space of A mentioned in the question.

2. Using what we got in the previous step, the solution space of the homogeneous system is:

$1+2£IZ’3+.’E5 = 0
To + T3+ Ts = 0
Ty4 — Ty == 0

Let x5 =t,x3 =1, where t,r € R to get

o — ¢ 9 1
—r—1 ! -1
X = r =T + ¢
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Therefore, {(—2,—1,1,0,0),(—1,—1,0,1,1)} is a basis for the null space of A. The nullity
of A is 2 while the rank(A) = 3. Also, nullity of AT = 4 (number of rows in A) — 3 = 1.

3. Yes. It is clear that X = (1)(1,0,2,0,1) + (2)(0,1,1,0,1) + (3)(0,0,0,1, —1) where those
vectors are the vectors of the basis of the row space that were found in (1). It is also
possible to consider the non-homogenous system X = ¢; (1,0,2,0,1) + ¢»(0,1,1,0,1) +
¢3(0,0,0,1,—1) to find the same answer.

4. Let the columns of A called Xy, -, X5. Then, we will express X3 and X5 (not in the
basis) as a linear combination of the vectors (those in the basis) { X7, X2, X4}. We can do
so by looking at the r.r.e.f. form we got in step 1. For X3: The third column of the rref
matrix suggest that X3 = 2 X7 + Xy + 0 X,. For X5: The fifth column of the rref matrix
suggest that X5 = X; + Xy — X,. Can you confirm that!?
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Exercise 4.5.1

1. Let A= _21 _01 . . Find a basis for the null space of A and determine the nullity of
A. Final answer: S = {X:1=(1,2,3),X,=1(0,1,1), X3 = (1,0,0)}
0 0 0 -1
2. Let A=10 1 0 0]-
0 0 0 1
(a) Find rank(A), nullity(A), rank(AT), and nullity (A7).
(b) Find a basis for the null space of A.

)
)
(c) Find a basis for the row space of AT.
(d) Find a basis for the row space of A.

Final answer:
(a) rank(A) = 2, nullity(A) = 2, rank(AT) = 2, and nullity(AT) = 1.
(b) a basis for the null space of A ={(1,0,0,0),(0,0,1,0)}.
(c) a basis for the row space of AT = {(0,1,0),(—1,0,1)}.
(d) a basis for the row space of A = {(0,1,0,0),(0,0,0,1)}.

1 0 -1 1
3. Let A=1]1 1 1 1.
1 2 3 1

(a) Find a basis for the null space of A.
(b) Find a basis for the row space of AT,

(c¢) Find a basis for the column space of A.
Final answer:
(a) rank(A) = 2, nullity(A) = 2, rank(AT) = 2, and nullity(AT) = 1.
(b) a basis for the null space of A = {(1,0,0,0),(0,0,1,0)}.
(c) a basis for the row space of AT = {(0,1,0),(—1,0,1)}.
(d) a basis for the row space of A ={(0,1,0,0),(0,0,0,1)}.
4. Let S = {Xl,XQ,Xg,X4,X5}, where X1 = (1,—2,0,3),X2 = (2,—5,—3,6),X3 =
(0,1,3,0), X, = (2,—1,4,—7), and X; = (5, -8, 1,2).

(a) Find a subset of S that forms a basis for the subspace span S.
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(b) Express each vector not in the basis as a linear combination of the basis vectors.
(c) If Ais the 4 x 5 matrix whose columns are the vectors of S in order, then find a basis
for the row space of A, a basis for the column space of A, and a basis for the null

space of A. Further, what is the nullity of A and the nullity of A”.




110 Chapter 4. General Vector Spaces



Chapter

5

Eigenvalues and Eigenvectors

5.1 Eigenvalues and Eigenvectors

Definition 5.1.1

Let A € M, ,. The real number X is called an eigenvalue of A if there exists a nonzero vector
X € R” so that
AX = )\X X #0.

In this case, X is called an eigenvector corresponding to A\. This is called the eigenproblem.

1 -1 and X = 1
—1 1 -1

For example, let A =

Therefore, A = 2 is an eigenvalue of A corresponding to eigenvector X.

Definition 5.1.2

If Ais an n x n matrix, then ps(\) = |\, — A| is called the characteristic polynomial of A.

Theorem 5.1.1

If Ais an n X n matrix, then X is an eigenvalue of A iff p4(\) = | (AL, — A)| = 0.

A is an eigenvalue of A iff X satisfies AX = AX, with X # O iff A satisfies A X — AX = O, with
X # O iff (M, — A)X = O has a nontrivial solutions iff | X[, — A| = 0.

111
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Example 5.1.1

1 0 2

Let A=1[1 0 0|. Find the eigenvalues of A.
0 0 -1

Solution:

We first compute the characteristic polynomial ps(A) = |Al3 — A| = 0 as follows:

A—1 0 -2
Sl A 0 |=A
0 0 A+1

A—1 —2

0 e T MA-DOED =0

which implies that

Theorem 5.1.2

Let A be an n X n matrix. Then

1. The ‘ A ‘ is the product of the eigenvalues of A.

2. A is invertible if and only if A = 0 is not an eigenvalue of A.

1. Assume that Aj, Ao, - -+, A\, are the eigenvalues of A. Then,

pa(A) = |AL, — A|

(A= A)A=A2) - (A=A,

setting A =0, pa(0) = |=A] = (=A)(=Xa) - (=\n),
(D" Al = (D" Adg A
(Al = M d

2. Ais invertible iff | A| # 0 #fF | A| = AAa--- X, # 0 #ff X # 0 forall 1 <i <n.
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Theorem 5.1.3

If Ais an n x n triangular matrix (upper triangular, lower triangular, or diagonal), then the

eigenvalues of A are the entries on the main diagonal.

Proof:

If A= J[a;;] (where 1 <14,5 <n) is a triangular matrix, then \J,, — A is also a triangular matrix,
and its main diagonal entries are [\; — a;| for 1 < i < n. Recall that the determinant of a

triangular matrix is the product of its main diagonal entries. Thus,
pA()\) = |)\In—A| =0 = ()\—CLH)()\—(IQQ)"'()\—CL,W) = 0.

Therefore, \; = a11, Ao = @92, -+, Ay = Q.

Theorem 5.1.4

If Ais an n X n matrix, then: A is an eigenvalue of A iff The system (A, — A)X = O has
nontrivial solutions iff There is a nonzero vector X such that AX = AX iff ) is a solution of

pa(A) = |, —A|=0

Definition 5.1.3

Let A be an n X n matrix with an eigenvalue A. The eigenspace of A corresponding to A,
denoted E,, is defined as the solution space of the homogeneous system (Al,, — A)X = O. That
is, E, is the null space of the matrix AI,, — A.

Example 5.1.2

1 0 2
Let A= 1|1 0 0|. Find bases for the eigenspaces of A. OR: Find the eigenvalues of A and
0O 0 -1

the corresponding eigenvectors.

Solution:
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As in Example 5.1.1, the characteristic polynomial p4(A) = |A\3 — A| = 0 as follows:

A—1 0 -2
-1 A 0 |=A
0 0 A+1

A—1 -2

0 e T MA-DOED =0

which implies that

h=-1], (X =0], [N =1]

Thus, there are three eigenspaces of A corresponding to these eigenvalues. To find bases for

these eigenspaces, we solve the homogeneous system (A3 — A)X = O, for A\j, Ay, A3. That is:

N—1 0 =2 |0
1 N 0 |ol. (5.1.1)
0 0 XN+1]0

1. = MI3—A)X; =0, X; = (a,b,¢c) #(0,0,0). Substitute Ay = —1 in Equation

5.1.1 to get:
-2 0 =210 10 110
-1 -1 0 |Of— - —=1]0 =1 1]0]-
0 0 010 0 0 010
Thus, a+c¢=0, and —b+c¢=0. That is, a = —¢, and b = ¢. Let ¢ =t € R\{0} to get
—t
X1 =1t |. Choosing t = 1, we get a basis for E,, containing the vector
t
-1
Pr=11
1

2. = (Mof3 —A)Xy =0, Xy = (a,b,¢) # (0,0,0). Substitute Ay = 0 in Equation

5.1.1 to get:
-1 0 =210 1 0 01]0
-1 0 O |O0f— =10 0 1|0f-
0O 0 1 0 0 0 00

)

Thus, a = ¢ =0. Let b =1t € R\{0} to get Xo = |¢|. Choosing t = 1, we get a basis for

jen}
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E,, containing the vector

0
P = |1].
0

3. = (A3l — A)X3 =0, X3 = (a,b,c) # (0,0,0). Substitute A3 = 1 in Equation

5.1.1 to get:
0O 0 —-210 1 =1 010
-1 1 o — —- 10 0 110
0O 0 2 1|0 0O 0 0710

t
Thus, a —b =0, and ¢ = 0. If b =t € R\{0}, then a =t as well and we get X3 = [¢].
0

Choosing t = 1, we get a basis for E,, containing the vector

1
Ps=11].
0

Theorem 5.1.5

If k is a positive integer, A is an eigenvalue of a matrix A, and X is a corresponding eigenvector,

then \* is an eigenvalue of A¥ and X is a corresponding eigenvector.

If AX = \X, then we have A2X = A(AX) = A(AX) = \(AX) = A2X. Applying this simple

idea k times, we get

ARX = AFTHAX) = MAFIX) = N2 (AF2X) = - = WX

Theorem 5.1.6

If X is an eigenvalue of an invertible matrix A, and X is a corresponding eigenvector, then % is

an eigenvalue of A~! and X is a corresponding eigenvector.
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.

If AX = \X and A is invertible, then multiplying with A~ both sides (from left), we get

AT AX =A"1 0 X -5 X=)\A'X o i\X:A‘lX.




5.1.  FEigenvalues and Eigenvectors 117

Exercise 5.1.1

1. Show that A and AT have the same eigenvalues. Hint: |\[,, — A| = ‘(/\]n - A)T‘.
2. Suppose that pa(x) = A2 (A + 3)3 (A — 4) is the characteristic polynomial of some matrix
A. Then,

(a) What is the size of A7 Explain.
(b) Is A invertible? Why?

(c) How many eigenspaces does A have? Explain.

1 3 3
3. Find the eigenvalues and bases for the eigenspaces of A = | 1 —1 —4/| Final result:
-1 -1 2
-1 2 0
)\1:—2,)\2:1,)\3:3.ADdP1: 1 ,PQZ —1,andP3: —11.
0 1 1
0 1 0
4. Find the eigenvalues of A = | () 0 1 | Final result: A\ = k since p(A\) = (A — k)3.
k3 —3k% 3k

5. Show that if a, b, ¢,d are integers such that a +b = ¢+ d, then A = @ Z] has integer
c

eigenvalues \y = a + b and Ay = a — ¢. Hint: Use your algebraic abilities.
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5.2 Diagonalization

Definition 5.2.1

A matrix B is said to be similar to matrix A, denoted by B = A, if there exists a non-singular

matrix P such that B = P~1AP.

* Properties of Similar Matrices:

1. A= Asince A=T1"1AI.
2. it B= A, then A = B.

Proof. If B = A, then 3P, P~! such that B = P~'AP or PBP™' = A. Let Q = P! to get
A=Q 'BQ. Thus, A= B. O]

3. if A= B and B=C, then A=C.
Proof.

A=B = 3P P !'suchthat A= P 'BP,
B=C = 3Q,Q 'suchthat B=Q'CQ.

Therefore,

A=P'BP=P'Q'CQP=(QP)'C(QP) = A=C.

[l
4. if A= B, then \A\ - \B\.
Proof. If A = B, then there exists P, P! such that B = P~' A P with |P| # 0. Therefore,
B = [P ar| = P 4] 171 = ] alppr= 4],
[l

5. if A= B, then AT = BT.
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Proof. If A = B, then there exist P, P~! such that B = P~ A P. Thus,

B = Pl'AP

BT = (P 'AP)T,
BT — pTypT (Pfl)T’
BT — PT AT (PT>71

Let Q7' = P, to get BT = Q7' AT Q. Therefore, BT = AT.

O

Theorem 5.2.1

Similar matrices have the same eigenvalues.

Let A and B be two similar n x n matrices. Then, there is an invertible matrix P such that

B = P! AP. Then,

ps(A) = M, — Bl = |\, - PP AP| = \P—I(AP Pt — A)P|

= |P7T AL — A] JPT = |AL — A] = pa(3).

The characteristic polynomials of A and B are the same. Hence they have the same eigenvalues.

Definition 5.2.2

An n x n matrix A is diagonalizable if and only if A is similar to a diagonal matrix D, i.e.

D =P 'AP with |P|#0.

D: its diagonal entries are the eigenvalues of A. That is: D = diag(A1, Az, -+, An).

P: its columns are the linearly independent eigenvectors of A. That is P = [Py | 5| -+ | P

Theorem 5.2.2

A matrix A has linearly independent eigenvectors if all of its eigenvalues are real and distinct.
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Theorem 5.2.3

An n x n matrix A is diagonalizable if and only if it has n linearly independent eigenvectors.

Definition 5.2.3

If Ais an n x n matrix with eigenvalue \g, then the number of times that A — Ay appears as a

factor in the characteristic polynomial of A is called the algebraic multiplicity of A.

Theorem 5.2.4

Let A be a square matrix. Then A is diagonalizable iff every eigenspace of A corresponding to

eigenvalue \; has its dimension equals to the algebraic multiplicity of ;.

Example 5.2.1

1 0 2

Let A=1|1 0 0|. If possible, find matrices P and D so that A is diagonalizable.
0 0 -1

Solution:

Recall that in Example 5.1.1, we found A\; = —1, Ay = 0, and A3 = 1 with bases

-1 0
P1: 1 7P2: 1 7P3:
0

=

Since, we have real and distinct eigenvalues, the eigenvectors Py, P,, and P; are linearly inde-

pendent. Thus, A is diagonalizable and

-1 0 O -1 0 1
D=1 0 0 and P=] 1 1 1
0O 0 1 1 0 O
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Example 5.2.2

Find a matrix P that diagonalizes

s

Il
o o o
o = o
[ N

Solution:

We first compute the characteristic polynomial p4(A) = A3 — A| = 0 as follows:

A 0 —1
0 =1 =2 (=xA-1)(A-1)=0
0 0 A—1
Thus, \y = 1, Ay = 1, and A\3 = 0. To find the corresponding bases for eigenspaces of A, we
solve the homogeneous system
hy 0 -1 0

0 N—1 —2 |of. (5.2.1)
0 0 N-—1]0

1. = (ML —A)X; =0, X; = (a,b,¢) # (0,0,0). Substitute \; = A, = 1 in

Equation (5.2.1) to get:

1 0 —-110
0 0 —-2]0]-
0 0 0 1]0
Thus, we get a — ¢ = 0 and —2¢ = 0 which implies that a = ¢ = 0. If b =t € R\{0}, then
0 0
we get X1 = |¢|. We choose t =1 to get a basis for E), with one vector P, = |1].
0 0

We see here that the dimension of E), is 1 while the multiplicity of A\; is 2. Therefore, A is not

diagonalizable.
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Example 5.2.3

Find, if possible, matrices D and P so that D = P~' A P, where

1
A= 0
—1

o O O

0
ol .
0

Solution:

We first compute the characteristic polynomial ps(A) = |Al3 — A| = 0 as follows:
0 0

0 X 0o|=XOX-1)=0.
0 A

Thus, Ay = 0, Ay =0, and A3 = 1. To find the corresponding bases for eigenspaces of A, we

solve the homogeneous system

010
0 X\ 0 |o0]. (5.2.2)
1 0 A |O

1. = (M3 —A)X; =0, Xy = (a,b,¢) # (0,0,0). Substitute A\; = Ay =0 in

Equation 5.2.2 to get:

-1 0 00

0O 0 0]0f.
10 00

Thus, we get a = 0. If b=t and ¢ = r (not both zeros) be two real numbers, we get

0 0 - 0 - 0
Xi=|t| =t |1|+7 |0 if = P =1, i = P,=|0|.
TZO 7’:1 1

,

—
e}

Here, the dimension of E,, is 2 which equals to the algebraic multiplicity of A = 0. So, we
continue with the other eigenvalues.

2. = (M\3l3 — A)X3 =0, X5 = (a,b,c) # (0,0,0). Substitute A3 = 1 in Equation
5.2.2 to get:

_ o O
o = O
_ o O
o O O
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t
Thus, we get b=0and a+c=0. If c=t € R\{0}, we get X3 = | 0 |. We choose t =1
—t
1
to get a basis with one vector P; = | ()
—1

There are three basis vectors in total, so the matrix P = [P; | P, | P5] diagonalize A and we get

D = P 'AP = diag(1,0,0).

1 0 0 1 0 0
D=10 0 0landP=|0 1 0
0 0 O -1 0 1
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Exercise 5.2.1

1. Show that similar matrices have the same trace. Hint: Recall that tr(AB) = tr(BA).

2. Show that A and B in each of the following are not similar matrices:

(a)A:2 1 andB:2 0.
3 4 S
4 2 0 0 3 4

(b A=1{2 1 o|land B=1|0 7 2|.
1 1 7 0 0 4

Hint: Similar matrices shares some properties like determinants and traces.
0 -3 -3

3. Let A= 1 4 1

-1 -1 2

(a) Find the eigenvalues of A.
(b) For each eigenvalue A, find the rank of the matrix A I3 — A.
(c) Is A diagonalizable? Why?

Hint: For part 3, use what you got in part 2 and recall that for n x n matrix, we have
n = rank — nullity.
4. Show that if A is diagonalizable, then
(a) AT is diagonalizable.

(b) A* is diagonalizable, for any positive integer k.

Hint: A is diagonalizable implies that A = P D P71,

1 -2 8
5. Let A= |0 —-1 0
0O 0 -1

(a) Find A1000,
(b) Find A20021,
(c) Find A~20021,

Hint: Write A in the form A = P D P71,
6. Show that if A and B are invertible matrices, then AB and BA are similar. Hint: They
are similar if AB = (*)_1 (BA) (%).
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7. Prove: If A and B are n x n invertible matrices, then A B~! and B~!' A have the same

eigenvalues. Hint: Show that they have the same characteristic polynomial.

1 2 0
8. Let A=1|0 2 0], where a € R.
1 a 2

(a) Find all eigenvalues of A.
(b) For a = —2, determine whether A is diagonalizable.
(c¢) For a # —2, find all eigenvectors of A.

Final answer: Eigenvalues: 1 and 2. If a = —2, A is diagonalizable. Otherwise, A is not
diagonalizable.

9. (a) Show that a square matrix A is singular iff it has an eigenvalue 0.
2017  —=2017 2020
(b) Use part 1 to show that 0 is an eigenvalue of the matrix A = {2018 —2018 2021].
2019 —2019 2022

125
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3.5 The Cross Product in R"

Recall that if 0 < 6 < 7 is an angle between two vectors X and Y in R"”, then

X.v
—1<cos = —— <1 or X-Y=|X||Y] cosb 3.5.1
XTIV (3:5.1)

Definition 3.5.1

Two nonzero vectors X and Y in R" are said to be orthogonal (or perpendicular) if X-Y = 0.

[ Remark 3.5.1

Let X,Y € R" and 0 < 0 <, then
L. XJ_Y(orthogonal)(:)Q:g(:)cosﬁzO@X-Y:O.

2. X //Y (parallel (same direction)) < 0 =0<cosf =1 XY =||X| V]| €Y =cX

with ¢ > 0.

3. X /Y (parallel (opposite direction)) < 0 =7 < cosf = -1 < X - Y = —||X||||Y|
Y =cX with ¢ <O0.

Definition 3.5.2

Let X = x1i + 22j + 23k and Y = y1i + yj + ysk be two vectors in R3, then
the cross product of X and Y, denoted by X x Y, is defined by X xY
Y
i j k
Ty w3|. |T1 w3 . |z =z
X xY = T T T3 = 2 31_ 1 3J+ 1 2k
Y2 Y3 Y1 Y3 Y1 Y2 .
i Y2 Y3 \
X
That is
X XY = (2293 — 392, T1 Y3 — T3 Y1, T1 Y2 — T2 Y1)
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Example 3.5.1

Find X XY where X =2i+j+2kand Y =3i—j— k.

Solution:
P 1 2. 2 2. |2
XxY=2 1 2 :| i— j+
-1 -1 3 -1 3
3 -1 -1

Uk —i4+8j—5k = (1,8,—5).

[ Remark 3.5.2

It can be shown (Try it your self) that

ixi=0 jxj=0 kxk=0
ixj=k jxk=i k xj=-i
ixk=—j|jxi=-k |kxi=]j

Theorem 3.5.1: Properties of Cross Product

. X xY=—-(Y xX),

2. X x(Y+2Z)=XxY+XxZ,

3. X+Y)xZ=XxZ+Y xZ,

4. cXxY=XxcY=c(XxY),

5. X x X =0,

6. X x0O0=0xX=0,

7.X (XxY)=Y (X xY)=0,

8 IXxYIP=IXIPIY*~(X V),
9. Xx (Y x2Z)=(X -2)Y —(X-Y)Z,
10 (X xY)xZ=(X-2)Y — (Y- 2)X.

Let X,Y,Z € R3 and ¢ € R. Then, (Can you prove the following propertes?)

(X x Y is orthogonal to X and Y

(Lagrange’s identity
(triple vector product

(triple vector product

)
)
)
)
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Example 3.5.2

Let X = 21+ 20§ + 23k; Y = y1i + 90j + ysk; Z = 211 + 20§ + 23k € R3. Show that

Ty T2 T3
(XXY)-Z:X-(YXZ)Zyl Y2 Y3 | -

21 k2 Z3

Solution:
i j k
L.HS. = (X X Y) - Z = T X9 Ts| - (Zli + Zgj + ng)

i Y2 Y3

= ([ Bi- " B+ T k| - (il + 2+ 25k)

Y2 Y3 Y1 Y3 Yy Y2

= . 3 21 — 2 3 2o + v 2 z3 = R.H.S.

Y2 Y3 Y1 Y3 Y1 Y2

The proof of X - (Y x Z) is similar.

Example 3.5.3

Let X,Y,Z be in R? such that (X xY)-Z = 6. Find a) X - (Y x Z), b) 2X - (Y x Z), ¢)
X -(ZxY)andd) X x (Y x 4X).

Solution:

1. X (Y x Z) =6,

2. 2X - (Y x Z) = 12,
3. X (ZxY)=—6,
4. X - (Y x4X) =0.
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Example 3.5.4

Find a vector of length 12 so that it is perpendicular to both

X=2i—j—2k and Y =2i+]j.

Solution:

The vector X x Y is always orthogonal to both X and Y. So, we compute that vector and make

its length equals to 12.

i j Kk
XxY=2 -1 —2/=2-4j+4k and | XxY|=+v4+16+16=6.
2 1 0

Therefore, £(X x Y) is a unit vector and orthogonal to both X and Y'; while 12(%()( X Y)) =
2(X x Y) is a vector of length 12 and orthogonal to both X and Y.

Theorem 3.5.2

Let X,Y € R3 have an angle 6 between them. Then

X <Y || =[[ X[ Y] siné.

Let X,Y,Z € R3, then
L X 1Y<=0=F+=sinf=1+= || X xY| =|X||Y],
2 X/flY <= f0=0on1<= || X xY||=0<= X xY =0,

3. Area of triangle:

1 °
AA = —ah / \
2 11,4
h h
sinff = —— /J
] . v
— h = ||z||sinf and if ||Y|| = a,

1 i 1
As = SIVIIX|sing = Z)X x V],

Yl =a
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4. Area of parallel gram (two triangles):

Ag = | X x Y.

5. Volume of parallel piped:

Volume = |X - (Y x Z)]|.
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Example 3.5.5

Solution:

Find the area of the triangle with vertices: P;(2,2,4), P»(—1,0,5), and P3(3,4,3).

— —
LetX:P1P2:P2—P1:(—3,—2,1) andY:Pngng—Pl:(1,2,—1). Then,

i j k
X xY -3 =2 1
1 2 -1
-2 11.
l_
2 -1 |

Therefore, | X x Y| = 4+ 16 = 20 = 2v/5 and Ax = L[| X x Y| = /5.

-3 -3

_2k:0i—2j—4k.
12

Example 3.5.6

Find the volume of the parallel piped with a vertex at the origin and edges X =i — 2j + 3k,
Y =i+3j+k,and Z =2i+j+ 2k.
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Solution:
1 -2
Volime = |X-(Vx2)|=|XxY)-Z|=| 1 3 1
2 1 2

= [16-1)-1(-4-3)+2(-2-9)| = |5+ 7-22| = | - 10| = 10.
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Exercise 3.5.1

Show that two nonzero vectors X and Y in R? are parallel, if and only if, X x Y = 0.

Solution:

X/)YifY =cXif X xY = X x (cX) = O.

Exercise 3.5.2

If U and V are nonzero vectors in R? such that ||(2U) x (2V)|| = —4U - V, compute the angle
between U and V.
Hint: What is 6 if tan () = —1.

Find the area of the triangle whose vertices are P(1,0,—1), Q(2,—1,3) and R(0, 1, —2).

Exercise 3.5.4

Let U and V be unit vectors in R*. Show that ||[U x V||? 4+ (U - V)? = 1.

Let X and Y be two nonzero vectors in R?, with angle § = Z between them. Find || X x Y|, if
| X || =3and || -2Y| =4.

Exercise 3.5.6

If X and Y are two vectors in R?, show that X x Y is orthogonal to X.

Find a vector that is orthogonal to both vectors X = (0,2, —2) and Y = (1, 3,0).
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Exercise 3.5.8

Find the are of the parallelogram determined by X = (1,3,4) and Y = (5, 1, 2).
Final answer: 2+/131.
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3.3 Orthogonality

Definition 3.3.1

Two nonzero vectors X and Y in R" are said to be orthogonal (or perpendicular) if X-Y = 0.
A nonemoty set of vectors in R” is called an orthogonal set if all pairs of distinct vectors in

the set are orthogonal. An orthogonal set of unit vectors is called an orthonormal set.

The set of standard unit vectors {i, j, k} in R? is an orthonormal set.

The set {(1,-2,0),(2,1,2),(4,2,—5)} is an orthogonal set since the dot product of any pair of

distinct vectors is 0.

Theorem 3.3.1: The Pythagoras Theorem in R"

If X and Y are orthogonal vectors in R", then

X +Y P =1 X+ Y[ Xty
Y
Since X and Y are orthogonal, we have X - Y = 0. Then X

IX+Y P =X +Y) (X +Y) = X|"+2(X V) + Y "= X"+ Y

Example 3.3.1

Find all vectors in R* that are orthogonal to both

X =(1,1,1,1) and Y = (1,1,—1,-1).

Solution:
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Let Z = (a,b,c,d) € R* so that Z- X = Z-Y = 0. Therefore, we get the following homogenous

op (1 1 0 00
o |0 0 1 1]0

Solving this system, we get a = —b and ¢ = —d. Let b = r and d = s where r,s € R to get

system:

a+b+c+d=0 1 1 1 1
—
at+b—c—d=0 1 1 -1 -1

Z = (—r,r,—s,s) which is the form of any vector in R* that is orthogonal to both X and Y.
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Example 3.3.2

Show that the triangle with vertices P (2,3, —4), P»(3,1,2), and P3(7,0,1) is a right triangle.

Solution:
P3 P3 Pl
o o [
/ \ P/ ¥3 /
PP
Pl. .P2 Pl. .P2 Pg. .P2

Figure 1 Figure 2 Figure 3

We start with Figure 1 as we do not know if there is a right angle. We create three vectors,

namely
X = PP = P-P = (1,-2,6)
Y = ﬁ; = B-P = (5-35)
Z = PP, = P—P = (4-1,-1)

This is draw in Figure 2. Then, we want to find two vectors whose dot product is zero which is

valid by considering X and Z. That is
X -Z=4+2-6=0.

Therefore, this triangle has a right angle at P, and it is drawn at Figure 3.
Also, we can use the Pythagoras Theorem to show that | Y ||> = || X [|*+ || Z||*.
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Exercise 3.3.1

1. Find all values of ¢ so that X = (¢,2,1,¢) and Y = (¢, —1, —2, —3) are orthogonal.
2. Show that if X and Y are orthogonal unit vectors in R", then

laX +bY || =Va®+ b2
3. Show that if X and Y are orthogonal unit vectors in R"™, then
|4X +3Y | =5.

4. Let X and Y be two vectors in R” so that || X || = || Y ||. Show that X —Y and X +Y
are orthogonal.

Verify that the triangle with vertices A(1,1,2), B(1,2,3), and C(3,0, 3) is a right triangle.
Find all values of a so that X = (a* —a,—3,—1) and Y = (2,a — 1, 2a) are orthogonal.
Find a unit vector that is orthogonal to both X = (1,1,0) and Y = (—1,0,1).

N
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Definition 3.4.1

A line in R? is determined by a fixed point Py = (g, %0, 20) and

a directional vector U = (a,b,c). The line L through Py and Y

parallel to U consists of the points P(x,y, z) such that o) o
(x,y,2) = (x0, Yo, 20) + t(a,b,c), where t € R. (3.4.1) . U b

Such equation is written as X = Py +tU, where X = (z,y, 2). e &

The parametric equation of line L (Equation 3.4.1):

z
= x9 + at

y = y + bt pteR,

z =z + c

while the symmetric form of L is given by:

T—To  Y—Y _ 22— %0
a b c

& =

Example 3.4.1

Let P(2,—2,3), P»(—1,0,4), P3(—4,2,5) be three points in R3.

1. Find the parametric equation and the symmetric form of the line that passes through the

points P; and Ps.

2. Does Pj lies on the same line? Explain.

Solution: ‘

—
1. Let U = PP, =P, — P, =(—3,2,1) and let By = P, be a fixed point on the line call it
L. Then, the parametric equations of L are:
2 — 3t

7 3 + t
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while the symmetric form of L is:

2. We have to check if P; satisfies the parametric equation or the symmetric form of L:

2-(-4) _(2)+2 _

(5) —3=:2.

3 2

Therefore, t = 2 and Pj lies on L. The same check can be done using parametric equations

of L.

[ Remark 3.4.1

Let Uy = (a1, b1, ¢1) and Uy = (ag, by, c2) be two vectors associated with Ly and Ly so that

r—x — z—z r—x — z—z
L Nt 1amdng 2B 2.Then,

ai by & a2 by C2

1. L1J_L2<:U1LU2@U1'U2:0,

2. Ll//LQ o Ul//Ug — U xU;3=0=U,=cU,; for cR.

Example 3.4.2

Show that Ly : Py(4,—1,4) and U, = (1,1, —-3) and Ly : P»(3,—1,0) and Uy = (2,1, 1) intersect

orthogonally, and find the intersection point.

Solution:

Clearly, U; - Uy =2+1—-3=0. Then, U; L. Uy = L; L L,. To find the intersection point

P(z,y, z), we look for a point satisfying both parametric equations at the same time:
L,: r=4+ t,, y=—-1+1t,and z =4 — 3ty,
Ly r=3+2, y=—1+1y, and z = ts.

Clearly, since y = —1 +t; = —1 4 to, we get t; = t5. Substituting this in z = 4 — 3t; = t5, we
get 4 — 3t; = t; which implies that ¢; = 1 = t5. Therefore, the intersection point according to

Liis P(4+1,—1+1,4— 3), that is P(5,0,1).
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Definition 3.4.2

The equation of a plane IT is determined by a fixed point Py(xq, Yo, 20)

contained in IT and a normal directional vector N = (a,b,c) which is N

orthogonal to II. A point P(x,y, z) lies on the plane IT if and only if I

N1RP < N-BP=0 /J/L

P
Po

The point-normal equations (general form) of the plane IT that passes through Py(zo, yo, 20)

and its normal vector is N = (a, b, ¢) is
a(z —xo) + b(y — yo) + ¢z — 20) = 0.
Where the standard form of the plane II is

ar +by+cz+d=0.

[ Remark 3.4.2 ]

7

Assume that we want to find an equation of a plane IT containing three points P (1,1, 21),

Py(x9,ys, 22), and P3(x3,ys, 23), then we can use either of the following ways:

1. For any point P(x,y,z) € II, we use the standard form of IT: ax + by + ¢z + d = 0 and
apply it for the points Py, P», and P5. This is a homogenous system in a, b, ¢, and d. This

system has non-trivial solutions if

r y 2z 1
T o a1 0.
To Y2 2z 1
T3 Y3 z3 1

Solving this determinant, we get an equation in the standard form for II.

— —
2. Another way is to compute two contained vectors in Il namely X = PP, and Y = P P;
and consider the normal vector to IT which is N = X x Y = (a,b, ¢) which is orthogonal

to IL. Then, the general form of IT is a(x — x1) + b(y — y1) + ¢(z2 — z1) = 0.
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Example 3.4.3

Let Pi(2,-2,1), P,(—1,0,3), P3(5,—3,4), and Py(4,—3,7) be four points in R?. Then,
1. Find an equation of the plane IT that passes through P;, P, and Pj.

2. Is P, contained in IT? Explain.

Solution:

. Let X = PPy = P,— Pi = (~3,2,2) and Y = PP, = Py — P, = (3,—1,3). These
two vectors are contained in IT while N = X x Y = (8,15, —3) is a normal vector to II.
Therefore, a general form of IT is 8(x — 2) + 15(y + 2) — 3(z — 1) = 0. The standard form
of IT is

8 + 15y — 32+ 17 = 0.

2. Py is contained in IT if it satisfies its equation:
8(4) + 15(=3) = 3(7) + 17 = —17 # 0.

Therefore, P, is not on the plane II.

| Remark 3.4.3

>

Let H1 8 a1x+b1y+clz+d1 =0 and H2 5 a2x+b2y+cgz+d2 =0. Then,
1. Hl//H2<:>N1//N2<:>N1XN2:0<:>N2:CN1, WhereCER,

2. II; LII, << N; L Ny<—= N;- N, =0.

Hl//HQ H1 LHQ
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Example 3.4.4

Find the parametric equation of the intersection line of the two planes:

II; : s —y+22=3 and Ily: 2z 4+ 4y — 22 = —6.

Solution:

We form a non-homogenous system to solve for the parametric equation of the intersection line:

—1 2| 3| o |1 -1 2 3| Lmom [1 -1 2] 3
2 4 2| -6 0 6 —6|—12 0 1 —1|-2

—_

r1+ro—ry
RERAL AL

1 0 1 1

0 1 —-1]-2
Therefore, the reduced system is:

r+z=1 and y—2z= -2

Let z =t € R to get the parametric equation of the intersection line:

T 1—1¢
yl = |—2+¢
z t

Example 3.4.5

Find two equations of two planes whose intersection line is the line L:

r=-243t;y=3—2t; z=5+4t; wheret € R.

Solution:

The symmetric form of L is:
r+2 y—3 z-5

3 -2 4
Therefore, a first plane is by equating %2 = y_—_;’, to get —22—4 = 3y—9. Thus, I, : 2243y—5 =

0. Another plane is by equating ’”%2 = zf, to get 4o +8 = 32 —15. Thus I, : 4 — 32+ 23 = 0.
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| Remark 3.4.4

~ A

Let U = (ay,b1,c1) be associated with the line L : T=% _Y-H_27% ;4 N =

aq b1 C1
(ag, be, c2) be associated with the plane Iy : asx + boy + coz + dy = 0. Then,

. LI« U//N <<= U x N =0<+<=U = cN where c € R,

2. L/MT<—=U L N<«<=U-N=0.

Ny

Ny
L N
l U
S SN
U
EL s I
- I — Ll
|
L1T1I L/

Example 3.4.6

Find a plane that passes through the point (2,4, —3) and is parallel to the plane —2x + 4y —
2z +6 =0.

Solution:

Since the two planes parallel, we can choose the normal vector of the second plane. That is

N = (—2,4,-5). Thus, the equation of the plane is

—2(x—-2)+4(y—-4)-5(2+3)=0 = —2x+4y—52—-27=0.

Example 3.4.7

Find a line that passes through the point (—2,5,—3) and is perpendicular to the plane 2z —
3y+4z+7=0.

Solution:
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The line L is perpendicular to our plane. So, it is parallel to its normal vector, so we can choose

the normal vector as U. That is U = (2, —3,4) and hence the parametric equation of L is

-2 + 2
y = 5 — 3 (t€R
z = =3 + 4
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Example 3.4.8

Show that the plane IT : 6x — 4y + 22 = 0 and the line L : %1 = %H = z — 5 intersect

orthogonally. Find the intersection point.

Solution:

We first have to write the symmetric form as

Then, the normal vector of IT is N = (6, —4, 2) and the directional vector of L is U = (3, —2,1).
Clearly, N = 2U which implies that N//U <= II L L.

The intersection point with respect to L is

= 1 + 3t
y = 4 — 2t pteR
P 5 + t

Therefore, plugin these values into the plane equation, we get

6(1+3t) —4(4—2t) +25+1t) = 0
6+18t—16+8t+10+2t = 0
28t = 0

Therefore, we get t = 0. Substituting this in the parametric equatio, we get the intersection

point as P(1,4,5).
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Exercise 3.4.1

1. Consider the planes:
I, : 24+y+2=3, Iy: 24+2y—22=2k, andI3: z+ k?2=2.

Find all values of k for which the intersection of the three planes is a line. Hint: Any point
on the intersection of the three planes must satisfies the three equations. This would give
a system of three equation. This system must have infinitely many solutions to describe a
line.

2. Consider the lines:

1 4 -3 —4 -2
Tyt =z—1, and Ly: T - _z .

L, : LA
! 3 2 2 ) 9

(a) Show that L; and Ly are perpendicular and find their point of intersection.
(b) Find an equation of the plane IT that contains both L; and L.

Hint: (a) Show that U; - Us = 0 and then find a point satisfying both equations of x, y,
and z in terms of ¢; and ts, for instance. (b) Consider N = U x Us.

3. Let L be the line through the points P;(—4,2, —6) and P»(1,4, 3).

(a) Find parametric equations for L.

(b) Find two planes whose intersection is L.

4. Find the parametric equations for the line L which passes through the points P(2,—1,4)
and Q(4,4,—2). For what value of k is the point R(k + 2,14, —14) on the line L?

5. Find the point of intersection of the line x = 1 — ¢,y = 1 + ¢,z = t, and the plane
3r+y+3z2—1=0.

6. Find the equations in symmetric form of line of intersection of planes:
Ii:x+2y—2=2, and Ilp:3z+7y+z2=11.
7. Find an equation of the plane containing the lines
Li:x=3+t,y=1—t,z=3t, and Ly:x=2s,y=—-245,2=5—s.
8. Find a,b € R so that the point P(3,a — 2b,2a + b) lies on the line

L:z=142t,y=2—-t,2=4+4 3t.
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